为什么神经网络参数不能全部初始化为全0?

|▌冷眼眸甩不掉的悲伤 提交于 2019-12-06 17:43:57

假设我们现在需要初始化的神经网络如下所示:


我们初始化权值为


其中W1代表输入层到隐藏层的权值矩阵,W2代表隐藏层到输出层的权值矩阵。

假设网络的输入为[x1,x2,x3],然后通过网络的正向传播,可以得出:


由于


我们可以知道:


从上面可以知道,此时隐藏层的值是相同的,然后经过激活函数f后,得到的a4,a5仍然是相同的,如下:

最终网络的输出为:

此时,假设我们的真实输出为y,则均方误差损失函数可以表示为


到了这里,此时又应该到我们伟大的BP反向传播算法出场了!我们需要反向更新权值,它使得预测的输出值与真实值越来越靠近。

这里假设我们的读者已经知道了BP反向传播的过程,可以参看通俗理解神经网络BP传播算法 - 知乎专栏

可以知道,通过反向传播后,结点4,5的梯度改变是一样的,假设都是

,那么此时结点4与结点6之间的参数,与结点5与结点6之间的参数变为了,如下:

由上式可以看出,新的参数相同了!!!!

同理可以得出输入层与隐藏层之间的参数更新都是一样的,得出更新之后的参数



都是相同的!然后不管进行多少轮正向传播以及反向传播,每俩层之间的参数都是一样的。

换句话说,本来我们希望不同的结点学习到不同的参数,但是由于参数相同以及输出值都一样,不同的结点根本无法学到不同的特征!这样就失去了网络学习特征的意义了。

隐藏层与其它层多个结点,其实仅仅相当于一个结点!!如下图表示:


这样总结来看:w初始化全为0,很可能直接导致模型失效,无法收敛。

因此可以对w初始化为随机值解决(在cnn中,w的随机化,也是为了使得同一层的多个filter,初始w不同,可以学到不同的特征,如果都是0或某个值,由于计算方式相同,可能达不到学习不同特征的目的)

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!