I have a trained model which I am loading using CNTK.load_model()
function. I was looking at the MNIST Tutorial on the CNTK git repo as reference for model evaluation code. I have created a data reader (which is a MinibatchSource
object) and trying to run model.eval(mb)
where mb = minibatch_source.next_minibatch(...)
(Similar to this answer)
But, I'm getting the following error message
Traceback (most recent call last):
File "LID_test.py", line 162, in <module>
test_and_evaluate()
File "LID_test.py", line 159, in test_and_evaluate
predictions = model.eval(mb)
File "/home/t-asbahe/anaconda3/envs/cntk-py35/lib/python3.5/site-packages/cntk/ops/functions.py", line 228, in eval
_, output_map = self.forward(arguments, self.outputs, device=device, as_numpy=as_numpy)
File "/home/t-asbahe/anaconda3/envs/cntk-py35/lib/python3.5/site-packages/cntk/utils/swig_helper.py", line 62, in wrapper
result = f(*args, **kwds)
File "/home/t-asbahe/anaconda3/envs/cntk-py35/lib/python3.5/site-packages/cntk/ops/functions.py", line 354, in forward
None, device)
File "/home/t-asbahe/anaconda3/envs/cntk-py35/lib/python3.5/site-packages/cntk/utils/__init__.py", line 393, in sanitize_var_map
if len(arguments) < len(op_arguments):
TypeError: object of type 'Variable' has no len()
I have no input_variable
named 'Variable'
in my model and I don't see any reason to get this error.
P.S.: My inputs are sparse inputs (one-hots)
You have a few options:
Pass a set of data as numpy array (instance in CNTK 202 tutorial) where onehot data is passed in as a numpy array.
pred = model.eval({model.arguments[0]:[onehot]})
Read the minibatch data and pass it to the eval function
eval_input_map = { input : reader_eval.streams.features }
eval_data = reader_eval.next_minibatch(eval_minibatch_size, input_map = eval_input_map) mydata = eval_data[input].value predicted= model.eval(mydata)
来源:https://stackoverflow.com/questions/42646842/cntk-python-api-how-to-get-predictions-from-the-trained-model