Remove strongly correlated columns from DataFrame

耗尽温柔 提交于 2019-12-06 12:20:37

You can use np.tril() instead of np.eye() for the mask:

def trimm_correlated(df_in, threshold):
    df_corr = df_in.corr(method='pearson', min_periods=1)
    df_not_correlated = ~(df_corr.mask(np.tril(np.ones([len(df_corr)]*2, dtype=bool))).abs() > threshold).any()
    un_corr_idx = df_not_correlated.loc[df_not_correlated[df_not_correlated.index] == True].index
    df_out = df_in[un_corr_idx]
    return df_out

Output:

    Col1    Col3
0   1       0.33
1   2       0.98
2   3       1.54
3   4       0.01
4   5       0.99

Use this directly on the dataframe to sort out the top correlation values.

import pandas as pd
import numpy as np
def correl(X_train):
    cor = X_train.corr()
    corrm = np.corrcoef(X_train.transpose())
    corr = corrm - np.diagflat(corrm.diagonal())
    print("max corr:",corr.max(), ", min corr: ", corr.min())
    c1 = cor.stack().sort_values(ascending=False).drop_duplicates()
    high_cor = c1[c1.values!=1]
    ## change this value to get more correlation results        
    thresh = 0.9
    display(high_cor[high_cor>thresh])
correl(X)
output:

max corr: 0.9821068918331252 , min corr:  -0.2993837739125243 

object at 0x0000017712D504E0>
count_rech_2g_8   sachet_2g_8         0.982107
count_rech_2g_7   sachet_2g_7         0.979492
count_rech_2g_6   sachet_2g_6         0.975892
arpu_8            total_rech_amt_8    0.946617
arpu_3g_8         arpu_2g_8           0.942428
isd_og_mou_8      isd_og_mou_7        0.938388
arpu_2g_6         arpu_3g_6           0.933158
isd_og_mou_6      isd_og_mou_8        0.931683
arpu_3g_7         arpu_2g_7           0.930460
total_rech_amt_6  arpu_6              0.930103
isd_og_mou_7      isd_og_mou_6        0.926571
arpu_7            total_rech_amt_7    0.926111
dtype: float64
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!