PCA(主成分分析)方法浅析 降维、数据压缩 找到数据中最重要的方向:方差最大的方向,也就是样本间差距最显著的方向 在与第一个正交的超平面上找最合适的第二个方向 PCA算法流程 上图第一步描述不正确,应该是去中心化,而不是中心化 具体来说,投影这一环节就是:将与特征值对应的k个特征向量分别作为行向量组成特征向量矩阵P 直接乘以特征变量就好。原来是二维数据,降维之后只有一维。 我们想保留几个维度的特征,就留下几个特征值和对应的特征向量。 来源:https://www.cnblogs.com/jiading/p/11963861.html 标签 pca 特征向量 主成分分析 数据降维 对应分析