问题
When I convert a numpy array to a pandas data frame pandas changes uint64 types to object types if the integer is greater than 2^63 - 1.
import pandas as pd
import numpy as np
x = np.array([('foo', 2 ** 63)], dtype = np.dtype([('string', np.str_, 3), ('unsigned', np.uint64)]))
y = np.array([('foo', 2 ** 63 - 1)], dtype = np.dtype([('string', np.str_, 3), ('unsigned', np.uint64)]))
print pd.DataFrame(x).dtypes.unsigned
dtype('O')
print pd.DataFrame(y).dtypes.unsigned
dtype('uint64')
This is annoying as I can't write the data frame to a hdf file in the table format:
pd.DataFrame(x).to_hdf('x.hdf', 'key', format = 'table')
Ouput:
TypeError: Cannot serialize the column [unsigned] because its data contents are [integer] object dtype
Can someone explain the type conversion?
回答1:
It's an open bug, but you can force it back to an uint64
using DataFrame.astype()
x = np.array([('foo', 2 ** 63)], dtype = np.dtype([('string', np.str_, 3), ('unsigned', np.uint64)]))
a = pd.DataFrame(x)
a['unsigned'] = a['unsigned'].astype(np.uint64)
>>>a.dtypes
string object
unsigned uint64
dtype: object
Other methods used to convert data types to numeric values raised errors or did not work:
>>>pd.to_numeric(a['unsigned'], errors = coerce)
OverflowError: Python int too large to convert to C long
>>>a.convert_objects(convert_numeric = True).dtypes
string object
unsigned object
dtype: object
回答2:
x = np.array([('foo', 2 ** 63)],
dtype = np.dtype([('string', np.str_, 3),
('unsigned', 'f4')]))
y = np.array([('foo', 2 ** 63 - 1)],
dtype = np.dtype([('string', np.str_, 3),
('unsigned', 'i8')]))
来源:https://stackoverflow.com/questions/34283319/why-does-pandas-convert-unsigned-int-greater-than-263-1-to-objects