我们今天继续分析著名的attention is all you need 论文的pytorch实现的源码解析。
由于项目很大,所以我们会分开几讲来进行讲解。
上一讲连接在此:
Attention is all you need pytorch实现 源码解析01 - 数据预处理、词表的构建 - https://blog.csdn.net/weixin_42744102/article/details/87006081
先上github源码:https://github.com/Eathoublu/attention-is-all-you-need-pytorch
项目结构:
-transfomer
—__init__.py
—Beam.py
—Constants.py
—Layers.py
—Models.py
—Module.py
—Optim.py
—SubLayers.py
—Translator.py
今天是第二讲,我们讲一讲模型的训练。模型的训练我将会用两节来讲解,第一节讲的是模型总体的训练的代码(也就是这一节)train.py,下一节我们讲一讲模型的构建以及结构,也就是transformer目录下的Models.py。
下面我们来看一下train.py的源码以及解析:
我使用注释来进行解析,请认真阅读从1到22的注释,不难,希望大家都能看懂。
'''
This script handling the training process.
'''
import argparse
import math
import time
from tqdm import tqdm
import torch
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data
import transformer.Constants as Constants
from dataset import TranslationDataset, paired_collate_fn
from transformer.Models import Transformer
from transformer.Optim import ScheduledOptim
# 1 - 从这里开始看,下面我们进入train的main函数,在main函数中我们可以看到-data参数(也就是昨天清洗好的训练集、验证集数据的绝对路径)是一定要传入的。
def main():
''' Main function '''
parser = argparse.ArgumentParser()
parser.add_argument('-data', required=True)
parser.add_argument('-epoch', type=int, default=10)
parser.add_argument('-batch_size', type=int, default=64)
#parser.add_argument('-d_word_vec', type=int, default=512)
parser.add_argument('-d_model', type=int, default=512)
parser.add_argument('-d_inner_hid', type=int, default=2048)
parser.add_argument('-d_k', type=int, default=64)
parser.add_argument('-d_v', type=int, default=64)
parser.add_argument('-n_head', type=int, default=8)
parser.add_argument('-n_layers', type=int, default=6)
parser.add_argument('-n_warmup_steps', type=int, default=4000)
parser.add_argument('-dropout', type=float, default=0.1)
parser.add_argument('-embs_share_weight', action='store_true')
parser.add_argument('-proj_share_weight', action='store_true')
parser.add_argument('-log', default=None)
parser.add_argument('-save_model', default=None)
parser.add_argument('-save_mode', type=str, choices=['all', 'best'], default='best')
parser.add_argument('-no_cuda', action='store_true')
parser.add_argument('-label_smoothing', action='store_true')
opt = parser.parse_args()
opt.cuda = not opt.no_cuda
opt.d_word_vec = opt.d_model
# 2 - 导入数据集,用prepare_dataloader函数,导入训练集以及验证集,返回的数据集是torch的Dataloader对象,这样方便一批一批送入进行训练。
#========= Loading Dataset =========#
data = torch.load(opt.data)
opt.max_token_seq_len = data['settings'].max_token_seq_len
training_data, validation_data = prepare_dataloaders(data, opt)
opt.src_vocab_size = training_data.dataset.src_vocab_size
opt.tgt_vocab_size = training_data.dataset.tgt_vocab_size
# 3 - 下面是对一个可选参数的处理,是可以加载词嵌入的共享权重的,我们先不去管它。
#========= Preparing Model =========#
if opt.embs_share_weight:
assert training_data.dataset.src_word2idx == training_data.dataset.tgt_word2idx, \
'The src/tgt word2idx table are different but asked to share word embedding.'
print(opt)
device = torch.device('cuda' if opt.cuda else 'cpu') # 4 - 如果有nvidia显卡,则使用显卡训练,否则cpu
transformer = Transformer( # 5 - 构建Transformer模型,这个模型在transformer文件夹的models下面,下面介绍一些参数,这个模型具体是啥样的,我下一节会讲。
opt.src_vocab_size, # 6 - data词表的大小
opt.tgt_vocab_size, # 7 - target词表的大小
opt.max_token_seq_len, # 8 - 最长的句子的长度
tgt_emb_prj_weight_sharing=opt.proj_share_weight,
emb_src_tgt_weight_sharing=opt.embs_share_weight,
d_k=opt.d_k,
d_v=opt.d_v,
d_model=opt.d_model,
d_word_vec=opt.d_word_vec,
d_inner=opt.d_inner_hid,
n_layers=opt.n_layers,
n_head=opt.n_head, # 注意力模型的头数
dropout=opt.dropout).to(device) # 9 - to(device)的意思是在什么设备上面跑,'cpu'就是用CPU跑,'cuda'就是用GPU
optimizer = ScheduledOptim( # 10 - 定义一个优化器
optim.Adam(
filter(lambda x: x.requires_grad, transformer.parameters()),
betas=(0.9, 0.98), eps=1e-09),
opt.d_model, opt.n_warmup_steps)
train(transformer, training_data, validation_data, optimizer, device ,opt) # 11 - 调用train函数,进行训练,下面我们看train函数,传入参数有:transformer模型,数据集,优化器等等。
# 12 - 好,现在进入train函数
def train(model, training_data, validation_data, optimizer, device, opt):
''' Start training '''
log_train_file = None
log_valid_file = None
if opt.log: # 13 - 如果运行的时候在命令行传入了log参数,则会生成日志。
log_train_file = opt.log + '.train.log'
log_valid_file = opt.log + '.valid.log'
print('[Info] Training performance will be written to file: {} and {}'.format(
log_train_file, log_valid_file))
with open(log_train_file, 'w') as log_tf, open(log_valid_file, 'w') as log_vf:
log_tf.write('epoch,loss,ppl,accuracy\n')
log_vf.write('epoch,loss,ppl,accuracy\n')
valid_accus = [] # 14 - 这个列表用于记录验证集的正确率
for epoch_i in range(opt.epoch): # 15 - 使用这一个for循环,将数据送入训练,下面我们具体来看:
print('[ Epoch', epoch_i, ']') # 16 - 打印迭代次数
start = time.time()
train_loss, train_accu = train_epoch( # 17 - 调用train_epoch函数进行训练,该函数在下面的225行,返回值是训练损失和正确率。
model, training_data, optimizer, device, smoothing=opt.label_smoothing)
print(' - (Training) ppl: {ppl: 8.5f}, accuracy: {accu:3.3f} %, '\
'elapse: {elapse:3.3f} min'.format(
ppl=math.exp(min(train_loss, 100)), accu=100*train_accu,
elapse=(time.time()-start)/60))
start = time.time()
valid_loss, valid_accu = eval_epoch(model, validation_data, device) # 18 - 在验证集上进行检测,返回值是验证的loss和acc
print(' - (Validation) ppl: {ppl: 8.5f}, accuracy: {accu:3.3f} %, '\
'elapse: {elapse:3.3f} min'.format(
ppl=math.exp(min(valid_loss, 100)), accu=100*valid_accu,
elapse=(time.time()-start)/60))
valid_accus += [valid_accu] # 19 - 每迭代一次,记录当次迭代的正确率,存进一个列表。
model_state_dict = model.state_dict() # 20 - 记录模型的参数。
checkpoint = {
'model': model_state_dict,
'settings': opt,
'epoch': epoch_i}
if opt.save_model: # 21 - 将模型持久化保存,如果当时调用的时候传入了这个参数的话。
if opt.save_mode == 'all':
model_name = opt.save_model + '_accu_{accu:3.3f}.chkpt'.format(accu=100*valid_accu)
torch.save(checkpoint, model_name)
elif opt.save_mode == 'best':
model_name = opt.save_model + '.chkpt'
if valid_accu >= max(valid_accus):
torch.save(checkpoint, model_name)
print(' - [Info] The checkpoint file has been updated.')
if log_train_file and log_valid_file: # 22 - 写入日志文件。好了,到此处,train.py也就是训练的部分已经解析完毕,后面的函数是一些工具,可看可不看,因为在上面都提到过了。
with open(log_train_file, 'a') as log_tf, open(log_valid_file, 'a') as log_vf:
log_tf.write('{epoch},{loss: 8.5f},{ppl: 8.5f},{accu:3.3f}\n'.format(
epoch=epoch_i, loss=train_loss,
ppl=math.exp(min(train_loss, 100)), accu=100*train_accu))
log_vf.write('{epoch},{loss: 8.5f},{ppl: 8.5f},{accu:3.3f}\n'.format(
epoch=epoch_i, loss=valid_loss,
ppl=math.exp(min(valid_loss, 100)), accu=100*valid_accu))
def prepare_dataloaders(data, opt):
# ========= Preparing DataLoader =========#
train_loader = torch.utils.data.DataLoader(
TranslationDataset(
src_word2idx=data['dict']['src'],
tgt_word2idx=data['dict']['tgt'],
src_insts=data['train']['src'],
tgt_insts=data['train']['tgt']),
num_workers=2,
batch_size=opt.batch_size,
collate_fn=paired_collate_fn,
shuffle=True)
valid_loader = torch.utils.data.DataLoader(
TranslationDataset(
src_word2idx=data['dict']['src'],
tgt_word2idx=data['dict']['tgt'],
src_insts=data['valid']['src'],
tgt_insts=data['valid']['tgt']),
num_workers=2,
batch_size=opt.batch_size,
collate_fn=paired_collate_fn)
return train_loader, valid_loader
def cal_performance(pred, gold, smoothing=False):
''' Apply label smoothing if needed '''
loss = cal_loss(pred, gold, smoothing)
pred = pred.max(1)[1]
gold = gold.contiguous().view(-1)
non_pad_mask = gold.ne(Constants.PAD)
n_correct = pred.eq(gold)
n_correct = n_correct.masked_select(non_pad_mask).sum().item()
return loss, n_correct
def cal_loss(pred, gold, smoothing):
''' Calculate cross entropy loss, apply label smoothing if needed. '''
gold = gold.contiguous().view(-1)
if smoothing:
eps = 0.1
n_class = pred.size(1)
one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1)
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
log_prb = F.log_softmax(pred, dim=1)
non_pad_mask = gold.ne(Constants.PAD)
loss = -(one_hot * log_prb).sum(dim=1)
loss = loss.masked_select(non_pad_mask).sum() # average later
else:
loss = F.cross_entropy(pred, gold, ignore_index=Constants.PAD, reduction='sum')
return loss
def train_epoch(model, training_data, optimizer, device, smoothing):
''' Epoch operation in training phase'''
model.train() #补充:这句话相当于一个初始化模型的功能,而并非训练
total_loss = 0
n_word_total = 0
n_word_correct = 0
for batch in tqdm(
training_data, mininterval=2,
desc=' - (Training) ', leave=False):
# prepare data
src_seq, src_pos, tgt_seq, tgt_pos = map(lambda x: x.to(device), batch)
gold = tgt_seq[:, 1:]
# forward
optimizer.zero_grad()
pred = model(src_seq, src_pos, tgt_seq, tgt_pos)
# backward
loss, n_correct = cal_performance(pred, gold, smoothing=smoothing)
loss.backward()
# update parameters
optimizer.step_and_update_lr()
# note keeping
total_loss += loss.item()
non_pad_mask = gold.ne(Constants.PAD)
n_word = non_pad_mask.sum().item()
n_word_total += n_word
n_word_correct += n_correct
loss_per_word = total_loss/n_word_total
accuracy = n_word_correct/n_word_total
return loss_per_word, accuracy
def eval_epoch(model, validation_data, device):
''' Epoch operation in evaluation phase '''
model.eval()
total_loss = 0
n_word_total = 0
n_word_correct = 0
with torch.no_grad():
for batch in tqdm(
validation_data, mininterval=2,
desc=' - (Validation) ', leave=False):
# prepare data
src_seq, src_pos, tgt_seq, tgt_pos = map(lambda x: x.to(device), batch)
gold = tgt_seq[:, 1:]
# forward
pred = model(src_seq, src_pos, tgt_seq, tgt_pos)
loss, n_correct = cal_performance(pred, gold, smoothing=False)
# note keeping
total_loss += loss.item()
non_pad_mask = gold.ne(Constants.PAD)
n_word = non_pad_mask.sum().item()
n_word_total += n_word
n_word_correct += n_correct
loss_per_word = total_loss/n_word_total
accuracy = n_word_correct/n_word_total
return loss_per_word, accuracy
if __name__ == '__main__':
main()
由于本人水平有限,其中不免会出现疏漏以及错误,烦请大家向我踊跃提出,本人将感激不尽,并将会在最快的时间内予以修正,谢谢大家!本人工作邮箱:1012950361@qq.com
敬请关注下一讲:Attention is all you need pytorch实现 源码解析03 - 模型的训练(2)- transformer模型构建的源代码解析
来源:CSDN
作者:蓝一潇、薛定谔的猫
链接:https://blog.csdn.net/weixin_42744102/article/details/87076089