问题
Consider the following code:
template <std::intmax_t Base, std::intmax_t Exponent>
struct integer_power_bounded
{
static_assert(Exponent >= 0,
"Error in 'integer_power_bounded': 'Exponent >= 0' is false");
static constexpr std::intmax_t value = /* something */;
};
template <std::intmax_t Base>
struct integer_power_bounded<Base, 0>
{
static constexpr std::intmax_t value = 1;
};
Instead of /* something */
, I would like to return std::numeric_limits<std::intmax_t>::min()
or std::numeric_limits<std::intmax_t>::max()
if Base^Exponent
cannot be represented by a std::intmax_t
. The difficult thing is to avoid overflows during computation because they create errors at compilation.
How to do that (without boost) ?
回答1:
A version based on SFINAE:
#include <cstdint>
#include <cmath>
#include <limits>
#include <type_traits>
constexpr std::intmax_t integer_power(std::intmax_t base,
std::intmax_t exponent)
{
return (exponent == 0) ? 1 :
(exponent % 2 == 0) ? integer_power(base, exponent/2)
*integer_power(base, exponent/2) :
base*integer_power(base, exponent-1);
}
namespace detail
{
template<std::intmax_t base, std::intmax_t exponent,
std::intmax_t res = integer_power(base,exponent)>
constexpr std::intmax_t pow_helper(int)
{
return res;
}
template<std::intmax_t base, std::intmax_t exponent>
constexpr std::intmax_t pow_helper(...)
{
return (exponent%2 == 0 || base > 0)
? std::numeric_limits<std::intmax_t>::max()
: std::numeric_limits<std::intmax_t>::min();
}
}
template<std::intmax_t base, std::intmax_t exponent>
constexpr std::intmax_t integer_power_bounded()
{
return detail::pow_helper<base,exponent>(0);
}
Usage example:
#include <iostream>
int main()
{
std::cout << sizeof(std::intmax_t) << '\n';
constexpr auto p2t6 = integer_power_bounded<2, 6>();
constexpr auto p2t62 = integer_power_bounded<2, 62>();
constexpr auto p2t63 = integer_power_bounded<2, 63>();
constexpr auto p2t64 = integer_power_bounded<2, 64>();
constexpr auto p2t65 = integer_power_bounded<2, 65>();
std::cout << "2^6 == " << p2t6 << '\n';
std::cout << "2^62 == " << p2t62 << '\n';
std::cout << "2^63 == " << p2t63 << '\n';
std::cout << "2^64 == " << p2t64 << '\n';
std::cout << "2^65 == " << p2t65 << '\n';
constexpr auto pm2t6 = integer_power_bounded<-2, 6>();
constexpr auto pm2t62 = integer_power_bounded<-2, 62>();
constexpr auto pm2t63 = integer_power_bounded<-2, 63>();
constexpr auto pm2t64 = integer_power_bounded<-2, 64>();
constexpr auto pm2t65 = integer_power_bounded<-2, 65>();
std::cout << "-2^6 == " << pm2t6 << '\n';
std::cout << "-2^62 == " << pm2t62 << '\n';
std::cout << "-2^63 == " << pm2t63 << '\n';
std::cout << "-2^64 == " << pm2t64 << '\n';
std::cout << "-2^65 == " << pm2t65 << '\n';
}
Output:
8 2^6 == 64 2^62 == 4611686018427387904 2^63 == 9223372036854775807 2^64 == 9223372036854775807 2^65 == 9223372036854775807 -2^6 == 64 -2^62 == 4611686018427387904 -2^63 == -9223372036854775808 -2^64 == 9223372036854775807 -2^65 == -9223372036854775808
Explanation:
A constant expression may not contain Undefined Behaviour [expr.const]/2:
- an operation that would have undefined behavior [Note: including, for example, signed integer overflow, certain pointer arithmetic, division by zero, or certain shift operations — end note];
Therefore, whenever the unbounded integer_power
produces an overflow, the expression used to declare the std::integral_constant
is no valid constant expression; substitution fails and the fall-back function is used.
来源:https://stackoverflow.com/questions/19876691/metafunction-to-compute-xn-and-return-the-integer-limit-without-overflow-if-not