常见模型评估方法

我的未来我决定 提交于 2019-12-05 04:36:22

几个常用的术语

True Positive   (真正, TP)      被模型预测为正的正样本;可以称作判断为真的正确率
True Negative (真负 , TN)    被模型预测为负的负样本 ;可以称作判断为假的正确率
False Positive  (假正, FP)      被模型预测为正的负样本;可以称作误报率
False Negative(假负 , FN)    被模型预测为负的正样本;可以称作漏报率

评价指标

True Positive Rate(真正率 , TPR)或灵敏度(sensitivity)

TPR = TP /(TP + FN)
正样本预测结果数 / 正样本实际数

True Negative Rate(真负率 , TNR)或特指度(specificity)
TNR = TN /(TN + FP)
负样本预测结果数 / 负样本实际数

False Positive Rate (假正率, FPR)
FPR = FP /(FP + TN)
被预测为正的负样本结果数 /负样本实际数

False Negative Rate(假负率 , FNR)
FNR = FN /(TP + FN)
被预测为负的正样本结果数 / 正样本实际数

精确度(Precision):
P = TP/(TP+FP) ; 反映了被分类器判定的正例中真正的正例样本的比重

准确率(Accuracy)
A = (TP + TN)/(P+N) = (TP + TN)/(TP + FN + FP + TN);

反映了分类器统对整个样本的判定能力——能将正的判定为正,负的判定为负

召回率(Recall),也称为 True Positive Rate:
R = TP/(TP+FN) = 1 - FN/T; 反映了被正确判定的正例占总的正例的比重

 

 

 

 

 

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!