简介
DataFrame让Spark具备了处理大规模结构化数据的能力,在比原有的RDD转化方式易用的前提下,计算性能更还快了两倍。这一个小小的API,隐含着Spark希望大一统「大数据江湖」的野心和决心。DataFrame像是一条联结所有主流数据源并自动转化为可并行处理格式的水渠,通过它Spark能取悦大数据生态链上的所有玩家,无论是善用R的数据科学家,惯用SQL的商业分析师,还是在意效率和实时性的统计工程师。
例子说明
提供了将结构化数据为DataFrame并注册为表,使用SQL查询的例子
提供了从RMDB中读取数据为DataFrame的例子
提供了将数据写入到RMDB中的例子
代码样例
import scala.collection.mutable.ArrayBuffer
import scala.io.Source
import java.io.PrintWriter
import util.control.Breaks._
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import java.sql.DriverManager
import java.sql.PreparedStatement
import java.sql.Connection
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.Row
import java.util.Properties
import org.apache.spark.sql.SaveMode
object SimpleDemo extends App {
val sc = new SparkContext("local[*]", "test")
val sqlc = new SQLContext(sc)
val driverUrl = "jdbc:mysql://ip:3306/ding?user=root&password=root&zeroDateTimeBehavior=convertToNull&characterEncoding=utf-8"
val tableName = "tbaclusterresult"
//把数据转化为DataFrame,并注册为一个表
val df = sqlc.read.json("G:/data/json.txt")
df.registerTempTable("user")
val res = sqlc.sql("select * from user")
println(res.count() + "---------------------------")
res.collect().map { row =>
{
println(row.toString())
}
}
//从MYSQL读取数据
val jdbcDF = sqlc.read
.options(Map("url" -> driverUrl,
// "user" -> "root",
// "password" -> "root",
"dbtable" -> tableName))
.format("jdbc")
.load()
println(jdbcDF.count() + "---------------------------")
jdbcDF.collect().map { row =>
{
println(row.toString())
}
}
//插入数据至MYSQL
val schema = StructType(
StructField("name", StringType) ::
StructField("age", IntegerType)
:: Nil)
val data1 = sc.parallelize(List(("blog1", 301), ("iteblog", 29),
("com", 40), ("bt", 33), ("www", 23))).
map(item => Row.apply(item._1, item._2))
import sqlc.implicits._
val df1 = sqlc.createDataFrame(data1, schema)
// df1.write.jdbc(driverUrl, "sparktomysql", new Properties)
df1.write.mode(SaveMode.Overwrite).jdbc(driverUrl, "testtable", new Properties)
//DataFrame类中还有insertIntoJDBC方法,调用该函数必须保证表事先存在,它只用于插入数据,函数原型如下:
//def insertIntoJDBC(url: String, table: String, overwrite: Boolean): Unit
//插入数据到MYSQL
val data = sc.parallelize(List(("www", 10), ("iteblog", 20), ("com", 30)))
data.foreachPartition(myFun)
case class Blog(name: String, count: Int)
def myFun(iterator: Iterator[(String, Int)]): Unit = {
var conn: Connection = null
var ps: PreparedStatement = null
val sql = "insert into blog(name, count) values (?, ?)"
try {
conn = DriverManager.getConnection(driverUrl, "root", "root")
iterator.foreach(data => {
ps = conn.prepareStatement(sql)
ps.setString(1, data._1)
ps.setInt(2, data._2)
ps.executeUpdate()
})
} catch {
case e: Exception => e.printStackTrace()
} finally {
if (ps != null) {
ps.close()
}
if (conn != null) {
conn.close()
}
}
}
}
将数据写入ORACLE示例
val driverUrl: String = "jdbc:oracle:thin:@IP:1521/sda"
jdbcDF.foreachPartition(insertDataFunc)
def insertDataFunc(iterator: Iterator[Row]): Unit = {
var conn: Connection = null
var psmt: PreparedStatement = null
val sql = "INSERT INTO TEST2(ID,NAME,NUM) VALUES ( ?,?, ?)"
var i = 0
var num = 0
try {
conn = DriverManager.getConnection(driverUrl, "user", "password")
conn.setAutoCommit(false);
psmt = conn.prepareStatement(sql)
iterator.foreach { row =>
{
i += 1
if (i > batchSize) {
i = 0
psmt.executeBatch();
num += psmt.getUpdateCount();
psmt.clearBatch();
}
psmt.setObject(1, row(0))
psmt.setObject(2, row(1))
psmt.setObject(3, row(2))
psmt.addBatch();
}
}
psmt.executeBatch();
num += psmt.getUpdateCount();
conn.commit();
println(num+"..........................")
} catch {
case e: Exception => {
e.printStackTrace()
try {
conn.rollback();
} catch {
case e: Exception => e.printStackTrace();
}
}
} finally {
if (psmt != null) {
psmt.close()
}
if (conn != null) {
conn.close()
}
}
}
来源:oschina
链接:https://my.oschina.net/u/1410765/blog/599859