I tried to solve a problem of map (matrix 4x4) using python.
I want to find Maximum number of elements in the path of a map provided the next node must be lesser than the previous node with all possible combinations of elements in the matrix.
4 8 7 3
2 5 9 3
6 3 2 5
4 4 1 6
The movement is like from an element can move to east-west-north-south
For example from m[0][1] can move to m[0][2] and m[1][1] 4-> 8 or 2
Here is the sample code but i have no idea to how to recursively check every element.
#import itertools
n = 4
matrix = [[4, 8, 7, 3 ], [2, 5, 9, 3 ], [6, 3, 2, 5 ], [4, 4, 1, 6]]
for index,ele in enumerate(matrix):
vals=[]
for i2,e2 in enumerate(ele):
for index2,ele2 in enumerate(ele):
if index < (n-1):
if ele2 > matrix[index+1] [index2]:
vals.append(matrix[index+1] [index2])
if index > 0:
if ele2 > matrix[index-1] [index2]:
vals.append(matrix[index-1] [index2])
if index2 < n-1:
if ele2 > matrix[index] [index2+1]:
vals.append(matrix[index] [index2+1])
if index2 >0:
if ele2 > matrix[index] [index2-1]:
vals.append(matrix[index] [index2-1])
how to recurse this function to loop till the end
For Example the answer will be like 8-5-3-2-1 (Longest Path with decreasing factor)
Try this recursion: The longest path starting at element (x, y)
is the longest longest path starting at any of its strictly smaller neighbors, plus 1.
def longest_path(matrix):
def inner_longest_path(x, y):
best, best_path = 0, []
# for all possible neighbor cells...
for dx, dy in ((+1, 0), (-1, 0), (0, +1), (0, -1)):
# if cell is valid and strictly smaller...
if (0 <= x + dx < len(matrix) and 0 <= y + dy < len(matrix[x])
and matrix[x+dx][y+dy] < matrix[x][y]):
n, path = inner_longest_path(x+dx, y+dy)
# check if the path starting at that cell is better
if n > best:
best, best_path = n, path
return best + 1, [matrix[x][y]] + best_path
return max(inner_longest_path(x, y) for x, row in enumerate(matrix)
for y, _ in enumerate(row))
Note that this will do a lot of duplicate calculations. Adding memoization is left as an excercise to the reader.
Example:
>>> longest_path(matrix)
(5, [9, 5, 3, 2, 1])
来源:https://stackoverflow.com/questions/31783045/maximum-number-of-elements-in-the-path-of-a-matrix