问题
The regular way of JSON-serializing custom non-serializable objects is to subclass json.JSONEncoder
and then pass a custom encoder to dumps.
It usually looks like this:
class CustomEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, foo):
return obj.to_json()
return json.JSONEncoder.default(self, obj)
print json.dumps(obj, cls = CustomEncoder)
What I\'m trying to do, is to make something serializable with the default encoder. I looked around but couldn\'t find anything.
My thought is that there would be some field in which the encoder looks at to determine the json encoding. Something similar to __str__
. Perhaps a __json__
field.
Is there something like this in python?
I want to make one class of a module I\'m making to be JSON serializable to everyone that uses the package without them worrying about implementing their own [trivial] custom encoders.
回答1:
As I said in a comment to your question, after looking at the json
module's source code, it does not appear to lend itself to doing what you want. However the goal could be achieved by what is known as monkey-patching
(see question What is a monkey patch?).
This could be done in your package's __init__.py
initialization script and would affect all subsequent json
module serialization since modules are generally only loaded once and the result is cached in sys.modules
.
The patch changes the default json encoder's default
method—the default default()
.
Here's an example implemented as a standalone module for simplicity's sake:
Module: make_json_serializable.py
""" Module that monkey-patches json module when it's imported so
JSONEncoder.default() automatically checks for a special "to_json()"
method and uses it to encode the object if found.
"""
from json import JSONEncoder
def _default(self, obj):
return getattr(obj.__class__, "to_json", _default.default)(obj)
_default.default = JSONEncoder.default # Save unmodified default.
JSONEncoder.default = _default # Replace it.
Using it is trivial since the patch is applied by simply importing the module.
Sample client script:
import json
import make_json_serializable # apply monkey-patch
class Foo(object):
def __init__(self, name):
self.name = name
def to_json(self): # New special method.
""" Convert to JSON format string representation. """
return '{"name": "%s"}' % self.name
foo = Foo('sazpaz')
print(json.dumps(foo)) # -> "{\"name\": \"sazpaz\"}"
To retain the object type information, the special method can also include it in the string returned:
return ('{"type": "%s", "name": "%s"}' %
(self.__class__.__name__, self.name))
Which produces the following JSON that now includes the class name:
"{\"type\": \"Foo\", \"name\": \"sazpaz\"}"
Magick Lies Here
Even better than having the replacement default()
look for a specially named method, would be for it to be able to serialize most Python objects automatically, including user-defined class instances, without needing to add a special method. After researching a number of alternatives, the following which uses the pickle
module, seemed closest to that ideal to me:
Module: make_json_serializable2.py
""" Module that imports the json module and monkey-patches it so
JSONEncoder.default() automatically pickles any Python objects
encountered that aren't standard JSON data types.
"""
from json import JSONEncoder
import pickle
def _default(self, obj):
return {'_python_object': pickle.dumps(obj)}
JSONEncoder.default = _default # Replace with the above.
Of course everything can't be pickled—extension types for example. However there are ways defined to handle them via the pickle protocol by writing special methods—similar to what you suggested and I described earlier—but doing that would likely be necessary for a far fewer number of cases.
Regardless, using the pickle protocol also means it would be fairly easy to reconstruct the original Python object by providing a custom object_hook
function argument on any json.loads()
calls that used any '_python_object'
key in the dictionary passed in, whenever it has one. Something like:
def as_python_object(dct):
try:
return pickle.loads(str(dct['_python_object']))
except KeyError:
return dct
pyobj = json.loads(json_str, object_hook=as_python_object)
If this has to be done in many places, it might be worthwhile to define a wrapper function that automatically supplied the extra keyword argument:
json_pkloads = functools.partial(json.loads, object_hook=as_python_object)
pyobj = json_pkloads(json_str)
Naturally, this could be monkey-patched it into the json
module as well, making the function the default object_hook
(instead of None
).
I got the idea for using pickle
from an answer by Raymond Hettinger to another JSON serialization question, whom I consider exceptionally credible as well as an official source (as in Python core developer).
Portablity to Python 3
The code above does not work as shown in Python 3 because json.dumps()
returns a bytes
object which the JSONEncoder
can't handle. However the approach is still valid. A simple way to workaround the issue is to latin1
"decode" the value returned from pickle.dumps()
and then "encode" it from latin1
before passing it on to pickle.loads()
in the as_python_object()
function. This works because arbitrary binary strings are valid latin1
which can always be decoded to Unicode and then encoded back to the original string again (as pointed out in this answer by Sven Marnach).
(Although the following works fine in Python 2, the latin1
decoding and encoding it does is superfluous.)
from decimal import Decimal
class PythonObjectEncoder(json.JSONEncoder):
def default(self, obj):
return {'_python_object': pickle.dumps(obj).decode('latin1')}
def as_python_object(dct):
try:
return pickle.loads(dct['_python_object'].encode('latin1'))
except KeyError:
return dct
data = [1,2,3, set(['knights', 'who', 'say', 'ni']), {'key':'value'},
Decimal('3.14')]
j = json.dumps(data, cls=PythonObjectEncoder, indent=4)
data2 = json.loads(j, object_hook=as_python_object)
assert data == data2 # both should be same
回答2:
You can extend the dict class like so:
#!/usr/local/bin/python3
import json
class Serializable(dict):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# hack to fix _json.so make_encoder serialize properly
self.__setitem__('dummy', 1)
def _myattrs(self):
return [
(x, self._repr(getattr(self, x)))
for x in self.__dir__()
if x not in Serializable().__dir__()
]
def _repr(self, value):
if isinstance(value, (str, int, float, list, tuple, dict)):
return value
else:
return repr(value)
def __repr__(self):
return '<%s.%s object at %s>' % (
self.__class__.__module__,
self.__class__.__name__,
hex(id(self))
)
def keys(self):
return iter([x[0] for x in self._myattrs()])
def values(self):
return iter([x[1] for x in self._myattrs()])
def items(self):
return iter(self._myattrs())
Now to make your classes serializable with the regular encoder, extend 'Serializable':
class MySerializableClass(Serializable):
attr_1 = 'first attribute'
attr_2 = 23
def my_function(self):
print('do something here')
obj = MySerializableClass()
print(obj)
will print something like:
<__main__.MySerializableClass object at 0x1073525e8>
print(json.dumps(obj, indent=4))
will print something like:
{
"attr_1": "first attribute",
"attr_2": 23,
"my_function": "<bound method MySerializableClass.my_function of <__main__.MySerializableClass object at 0x1073525e8>>"
}
回答3:
I suggest putting the hack into the class definition. This way, once the class is defined, it supports JSON. Example:
import json
class MyClass( object ):
def _jsonSupport( *args ):
def default( self, xObject ):
return { 'type': 'MyClass', 'name': xObject.name() }
def objectHook( obj ):
if 'type' not in obj:
return obj
if obj[ 'type' ] != 'MyClass':
return obj
return MyClass( obj[ 'name' ] )
json.JSONEncoder.default = default
json._default_decoder = json.JSONDecoder( object_hook = objectHook )
_jsonSupport()
def __init__( self, name ):
self._name = name
def name( self ):
return self._name
def __repr__( self ):
return '<MyClass(name=%s)>' % self._name
myObject = MyClass( 'Magneto' )
jsonString = json.dumps( [ myObject, 'some', { 'other': 'objects' } ] )
print "json representation:", jsonString
decoded = json.loads( jsonString )
print "after decoding, our object is the first in the list", decoded[ 0 ]
回答4:
The problem with overriding JSONEncoder().default
is that you can do it only once. If you stumble upon anything a special data type that does not work with that pattern (like if you use a strange encoding). With the pattern below, you can always make your class JSON serializable, provided that the class field you want to serialize is serializable itself (and can be added to a python list, barely anything). Otherwise, you have to apply recursively the same pattern to your json field (or extract the serializable data from it):
# base class that will make all derivatives JSON serializable:
class JSONSerializable(list): # need to derive from a serializable class.
def __init__(self, value = None):
self = [ value ]
def setJSONSerializableValue(self, value):
self = [ value ]
def getJSONSerializableValue(self):
return self[1] if len(self) else None
# derive your classes from JSONSerializable:
class MyJSONSerializableObject(JSONSerializable):
def __init__(self): # or any other function
# ....
# suppose your__json__field is the class member to be serialized.
# it has to be serializable itself.
# Every time you want to set it, call this function:
self.setJSONSerializableValue(your__json__field)
# ...
# ... and when you need access to it, get this way:
do_something_with_your__json__field(self.getJSONSerializableValue())
# now you have a JSON default-serializable class:
a = MyJSONSerializableObject()
print json.dumps(a)
回答5:
I don't understand why you can't write a serialize
function for your own class? You implement the custom encoder inside the class itself and allow "people" to call the serialize function that will essentially return self.__dict__
with functions stripped out.
edit:
This question agrees with me, that the most simple way is write your own method and return the json serialized data that you want. They also recommend to try jsonpickle, but now you're adding an additional dependency for beauty when the correct solution comes built in.
回答6:
For production environment, prepare rather own module of json
with your own custom encoder, to make it clear that you overrides something.
Monkey-patch is not recommended, but you can do monkey patch in your testenv.
For example,
class JSONDatetimeAndPhonesEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, (datetime.date, datetime.datetime)):
return obj.date().isoformat()
elif isinstance(obj, basestring):
try:
number = phonenumbers.parse(obj)
except phonenumbers.NumberParseException:
return json.JSONEncoder.default(self, obj)
else:
return phonenumbers.format_number(number, phonenumbers.PhoneNumberFormat.NATIONAL)
else:
return json.JSONEncoder.default(self, obj)
you want:
payload = json.dumps(your_data, cls=JSONDatetimeAndPhonesEncoder)
or:
payload = your_dumps(your_data)
or:
payload = your_json.dumps(your_data)
however in testing environment, go a head:
@pytest.fixture(scope='session', autouse=True)
def testenv_monkey_patching():
json._default_encoder = JSONDatetimeAndPhonesEncoder()
which will apply your encoder to all json.dumps
occurrences.
来源:https://stackoverflow.com/questions/18478287/making-object-json-serializable-with-regular-encoder