I have a multi-indexed dataframe and I'm looking to backfill missing values within a group. The dataframe I have currently looks like this:
df = pd.DataFrame({
'group': ['group_a'] * 7 + ['group_b'] * 3 + ['group_c'] * 2,
'Date': ["2013-06-11",
"2013-07-02",
"2013-07-09",
"2013-07-30",
"2013-08-06",
"2013-09-03",
"2013-10-01",
"2013-07-09",
"2013-08-06",
"2013-09-03",
"2013-07-09",
"2013-09-03"],
'Value': [np.nan, np.nan, np.nan, 9, 4, 40, 18, np.nan, np.nan, 5, np.nan, 2]})
df.Date = df['Date'].apply(lambda x: pd.to_datetime(x).date())
df = df.set_index(['group', 'Date'])
I'm trying to get a dataframe that backfills the missing values within the group. Like this:
Group Date Value
group_a 2013-06-11 9
2013-07-02 9
2013-07-09 9
2013-07-30 9
2013-08-06 4
2013-09-03 40
2013-10-01 18
group_b 2013-07-09 5
2013-08-06 5
2013-09-03 5
group_c 2013-07-09 2
2013-09-03 2
I tried using pd.fillna('Value', inplace=True)
, but I get a warning on setting a value on copy, which I've since figured out is related to the presence of the multi-index. Is there a way to make fillna work for multi-indexed rows? Also, ideally I'd be able to apply the fillna to only one column and not the entire dataframe.
Any insight on this would be great.
Use groupby(level=0)
then bfill
and update
:
df.update(df.groupby(level=0).bfill())
df
Note: update
changes df
inplace.
Other alternatives
df = df.groupby(level='group').bfill()
df = df.unstack(0).bfill().stack().swaplevel(0, 1).reindex_like(df)
Column specific
df.Value = df.groupby(level=0).Value.bfill()
来源:https://stackoverflow.com/questions/38599012/multi-indexed-fillna-in-pandas