11- 常见的分布

强颜欢笑 提交于 2019-12-04 04:28:34

常见的分布

参考: https://www.cnblogs.com/pinking/p/7898313.html

1. 0-1分布

概率函数为:

\[P\{X=k\}=p^k(1-p)^k\] , 其中k取0或者1.

  • 只有两种结果
  • 试验只做一次

2. 几何分布

\(P(A)=p\) , 第\(k\)次首次发生,前\(k-1\)次未发生,概率函数为:

\[P\{X=k\}=p^k(1-p)^{k-1}\]

3. 二项分布

\(P(A)=p\), \(n\)次试验, 发生了\(k\)次, 概率函数为:

\[P\{X=k\}=C_n^kp^k(1-p)^{n-k}\]

  • 二项分布最可能的值
  • $如果(n+1)p为整数 , 那么最可能的值就是(n+1)p , (n+1)p-1 $
  • \(如果(n+1)p不为整数 , 那么最可能的值就是[(n+1)p] 取整.\)

4. 泊松分布

概率函数为:

\[P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda}, 其中\lambda >0, k=0,1,2,3,4,....\]

  • 泊松分布的参数\(λ\)是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。
  • 泊松分布的期望和方差均为\(λ\)

泊松分布与二项分布

当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中\(λ\)\(np\)。通常当\(n≧20,p≦0.05\)时,就可以用泊松公式近似得计算。
事实上,泊松分布正是由二项分布推导而来的.

5. 超几何分布

定义如下:

例题:

6. 均匀分布

在概率论和统计学中,均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。 均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为\(U(a,b)\)

其概率密度函数为:

\[p(x)=\frac{1}{b-a}, a\leq x \leq b \]
\[p(x)=0, else\]

7. 指数分布

  • \(f(x)=\lambda e^{-\lambda x}\) , x>0, \lambda >0
  • \(f(x)=0, x\leq 0\)
  • \(E = \frac{1}{\lambda}\)

8. 正太分布

\[f(x)=\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(x-\mu)^2}{2\sigma^2})\]

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!