问题
I was reading and came across this formula:
The formula is for cosine similarity. I thought this looked interesting and I created a numpy array that has user_id as row and item_id as column. For instance, let M
be this matrix:
M = [[2,3,4,1,0],[0,0,0,0,5],[5,4,3,0,0],[1,1,1,1,1]]
Here the entries inside the matrix are ratings the people u
has given to item i
based on row u
and column i
. I want to calculate this cosine similarity for this matrix between items (rows). This should yield a 5 x 5 matrix I believe. I tried to do
df = pd.DataFrame(M)
item_mean_subtracted = df.sub(df.mean(axis=0), axis=1)
similarity_matrix = item_mean_subtracted.fillna(0).corr(method="pearson").values
However, this does not seem right.
回答1:
Here's a possible implementation of the adjusted cosine similarity:
import numpy as np
from scipy.spatial.distance import pdist, squareform
M = np.asarray([[2, 3, 4, 1, 0],
[0, 0, 0, 0, 5],
[5, 4, 3, 0, 0],
[1, 1, 1, 1, 1]])
M_u = M.mean(axis=1)
item_mean_subtracted = M - M_u[:, None]
similarity_matrix = 1 - squareform(pdist(item_mean_subtracted.T, 'cosine'))
Remarks:
- I'm taking advantage of NumPy broadcasting to subtract the mean.
- If
M
is a sparse matrix, you could do something like ths:M.toarray()
. - From the docs:
Y = pdist(X, 'cosine')
Computes the cosine distance between vectors u and v,
1 − u⋅v / (||u||2||v||2)
where ||∗||2 is the 2-norm of its argument *, and u⋅v is the dot product of u and v. - Array transposition is performed through the T method.
Demo:
In [277]: M_u
Out[277]: array([ 2. , 1. , 2.4, 1. ])
In [278]: item_mean_subtracted
Out[278]:
array([[ 0. , 1. , 2. , -1. , -2. ],
[-1. , -1. , -1. , -1. , 4. ],
[ 2.6, 1.6, 0.6, -2.4, -2.4],
[ 0. , 0. , 0. , 0. , 0. ]])
In [279]: np.set_printoptions(precision=2)
In [280]: similarity_matrix
Out[280]:
array([[ 1. , 0.87, 0.4 , -0.68, -0.72],
[ 0.87, 1. , 0.8 , -0.65, -0.91],
[ 0.4 , 0.8 , 1. , -0.38, -0.8 ],
[-0.68, -0.65, -0.38, 1. , 0.27],
[-0.72, -0.91, -0.8 , 0.27, 1. ]])
来源:https://stackoverflow.com/questions/42866174/cosine-similarity