python库之——sklearn

岁酱吖の 提交于 2019-12-03 09:43:54

机器学习库sklearn

官方documentation(资料)中分为不同的部分:

 

其中我们主要讲User Guide(机器学习算法理论介绍)、API(程序实现方法):

一、User Guide

https://scikit-learn.org/stable/user_guide.html

模块 说明
Supervised learning监督学习 监督学习的各种算法介绍
Unsupervised learning非监督学习 非监督学习的各种算法介绍
Model selection and evaluation模型选择和评价
交叉验证、调参、模型评价、验证曲线
Inspection检查  
Dataset transformations数据转换 特征抽取、数据预处理、缺失值处理、非监督降维方法、随机投影、核近似、转换预测目标
Dataset loading utilities数据下载程序 玩具数据、真实数据集、生成数据、下载其它数据
Computing with scikit-learn利用sklearn计算 对大数据集的计算策略、计算表现、并行计算、资源管理和配置

二、api

和前面的内容对应,这个内容里给了在sklearn里的实现方法。

模块 功能

sklearn.base module: Base classes and utility functions
sklearn.calibration module: Probability Calibration(标准、标定)
sklearn.cluster: Clustering
sklearn.cluster.bicluster: Biclustering
sklearn.compose: Composite Estimators
sklearn.covariance: Covariance Estimators(协方差)
sklearn.cross_decomposition: Cross decomposition(交叉分解)
sklearn.datasets: Datasets
sklearn.decomposition: Matrix Decomposition
sklearn.discriminant_analysis: Discriminant Analysis(判别分析)
sklearn.dummy: Dummy estimators
sklearn.ensemble: Ensemble Methods
sklearn.exceptions module(exceptions模块): Exceptions and warnings
sklearn.experimental: Experimental
sklearn.feature_extraction: Feature Extraction
sklearn.feature_selection: Feature Selection
sklearn.gaussian_process: Gaussian Processes
sklearn.isotonic: Isotonic regression
sklearn.impute: Impute
sklearn.kernel_approximation Kernel Approximation
sklearn.kernel_ridge Kernel Ridge Regression
sklearn.linear_model: Generalized Linear Models?
sklearn.manifold: Manifold Learning
sklearn.metrics: Metrics
sklearn.mixture: Gaussian Mixture Models
sklearn.model_selection: Model Selection
sklearn.multiclass: Multiclass and multilabel classification
sklearn.multioutput: Multioutput regression and classification
sklearn.naive_bayes: Naive Bayes
sklearn.neighbors: Nearest Neighbors
sklearn.neural_network: Neural network models
sklearn.pipeline: Pipeline
sklearn.inspection: inspection
sklearn.preprocessing: Preprocessing and Normalization
sklearn.random_projection: Random projection?
sklearn.random_projection: Random projection?
sklearn.svm: Support Vector Machines?
sklearn.tree: Decision Trees?
sklearn.utils: Utilities(实用程序)

 
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!