三元环计数

别说谁变了你拦得住时间么 提交于 2019-11-26 17:41:29

也许更好的阅读体验

问题描述

给一张\(n\)个点,\(m\)条边的简单无向图,求解有多少个三元环
三元环:一个三元组\(\left(i,j,k\right)\)表示三个点,要求存在边\(\left(i,j\right),\left(i,k\right),\left(j,k\right)\)


解决方法

定义点的大小

我们先把每个点\(i\)定义一个双关键字\(\left(deg_i,id_i\right)\),其中\(deg_i,id_i\)分别表示\(i\)点的度数与编号,这样每个点就有了严格的大小关系

转为有向图

然后我们将这张无向图转变为有向图:把所有的边\(\left(i,j\right)\)改为由关键字大的点向关键字小的点连边,这样我们就可以得到一张有向无环图

找环

找环分为三步

  • 枚举一个点\(i\),将所有出边所连接的点标记为\(i\)
  • 枚举一个由\(i\)连出的点\(j\)
  • 枚举所有由\(j\)连出的点\(k\),若\(k\)有标记了且该标记为\(i\),就表明找到了一个三元环

这样做就保证了每个环只会被\(i\)所找到
时间复杂度,最高为\(O\left(m\sqrt{m}\right)\)

如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!