I need to calculate coefficients of polynomial using Lagrange interpolation polynomial, as my homework, I decide to do this in Javascript.
here is definition of Lagrange polynomial (L(x))
Lagrange basis polynomials are defined as follows
Calculate y value for specific X (W(x) function) is simple but I need to calculate coefficients of polynomial (array of [a0, a1, ..., an]) I need to do this to n<=10 but it will be nice to have arbitrary n, then I can put that function into horner function and draw that polynomial.
I have function that calculate denominator in first equation
function denominator(i, points) {
var result = 1;
var x_i = points[i].x;
for (var j=points.length; j--;) {
if (i != j) {
result *= x_i - points[j].x;
}
}
return result;
}
and function that return y using horner method (I also have drawing function using canvas)
function horner(array, x_scale, y_scale) {
function recur(x, i, array) {
if (i == 0) {
return x*array[0];
} else {
return array[i] + x*recur(x, --i, array);
}
}
return function(x) {
return recur(x*x_scale, array.length-1, array)*y_scale;
};
}
anybody know algorithm to do this, or idea how to calculate those coefficients
Well, you can do it the naive way. Represent a polynomial by the array of its coefficients, the array
[a_0,a_1,...,a_n]
corresponding to a_0 + a_1*X + ... + a_n*X^n
. I'm no good with JavaScript, so pseudocode will have to do:
interpolation_polynomial(i,points)
coefficients = [1/denominator(i,points)]
for k = 0 to points.length-1
if k == i
next k
new_coefficients = [0,0,...,0] // length k+2 if k < i, k+1 if k > i
if k < i
m = k
else
m = k-1
for j = m downto 0
new_coefficients[j+1] += coefficients[j]
new_coefficients[j] -= points[k]*coefficients[j]
coefficients = new_coefficients
return coefficients
Start with the constant polynomial 1/((x_1-x_0)* ... *(x_i-x_{i-1})*(x_i-x_{i+1})*...*(x_i-x_n))
and multiply with X - x_k
for all k != i
. So that gives the coefficients for Li, then you just multiply them with yi (you could do that by initialising coefficients
to y_i/denominator(i,points)
if you pass the y-values as parameters) and add all the coefficients together finally.
polynomial = [0,0,...,0] // points.length entries
for i = 0 to points.length-1
coefficients = interpolation_polynomial(i,points)
for k = 0 to points.length-1
polynomial[k] += y[i]*coefficients[k]
Calculating each Li is O(n²), so the total calculation is O(n³).
Update: In your jsFiddle, you had an error in the polynomial multiplication loop in addition to (the now corrected) mistake with the start index I made, it should be
for (var j= (k < i) ? (k+1) : k; j--;) {
new_coefficients[j+1] += coefficients[j];
new_coefficients[j] -= points[k].x*coefficients[j];
}
Since you decrement j
when testing, it needs to start one higher.
That doesn't produce a correct interpolation yet, but it's at least more sensible than before.
Also, in your horner
function,
function horner(array, x_scale, y_scale) {
function recur(x, i, array) {
if (i == 0) {
return x*array[0];
} else {
return array[i] + x*recur(x, --i, array);
}
}
return function(x) {
return recur(x*x_scale, array.length-1, array)*y_scale;
};
}
you multiply the highest coefficient twice with x
, it should be
if (i == 0) {
return array[0];
}
instead. Still no good result, though.
Update2: Final typo fixes, the following works:
function horner(array, x_scale, y_scale) {
function recur(x, i, array) {
if (i == 0) {
return array[0];
} else {
return array[i] + x*recur(x, --i, array);
}
}
return function(x) {
return recur(x*x_scale, array.length-1, array)*y_scale;
};
}
// initialize array
function zeros(n) {
var array = new Array(n);
for (var i=n; i--;) {
array[i] = 0;
}
return array;
}
function denominator(i, points) {
var result = 1;
var x_i = points[i].x;
for (var j=points.length; j--;) {
if (i != j) {
result *= x_i - points[j].x;
}
}
console.log(result);
return result;
}
// calculate coefficients for Li polynomial
function interpolation_polynomial(i, points) {
var coefficients = zeros(points.length);
// alert("Denominator " + i + ": " + denominator(i,points));
coefficients[0] = 1/denominator(i,points);
console.log(coefficients[0]);
//new Array(points.length);
/*for (var s=points.length; s--;) {
coefficients[s] = 1/denominator(i,points);
}*/
var new_coefficients;
for (var k = 0; k<points.length; k++) {
if (k == i) {
continue;
}
new_coefficients = zeros(points.length);
for (var j= (k < i) ? k+1 : k; j--;) {
new_coefficients[j+1] += coefficients[j];
new_coefficients[j] -= points[k].x*coefficients[j];
}
coefficients = new_coefficients;
}
console.log(coefficients);
return coefficients;
}
// calculate coefficients of polynomial
function Lagrange(points) {
var polynomial = zeros(points.length);
var coefficients;
for (var i=0; i<points.length; ++i) {
coefficients = interpolation_polynomial(i, points);
//console.log(coefficients);
for (var k=0; k<points.length; ++k) {
// console.log(points[k].y*coefficients[k]);
polynomial[k] += points[i].y*coefficients[k];
}
}
return polynomial;
}
You can find coefficients of Lagrange interpolation polynomial relatively easy if you use a matrix form of Lagrange interpolation presented in "Beginner's guide to mapping simplexes affinely ", section "Lagrange interpolation". I'm afraid, I don't know JavaScript to provide you with appropriate code, but I worked with Python a little bit, maybe the following can help (sorry for bad codestyle -- I'm mathematician, not programmer)
import numpy as np
# input
x = [0, 2, 4, 5] # <- x's
y = [2, 5, 7, 7] # <- y's
# calculating coefficients
M = [[_x**i*(-1)**(i*len(x)) for _x in x] for i in range(len(x))]
C = [np.linalg.det((M+[y]+M)[d:d+len(x)]) for d in range(len(x)+1)]
C = (C / C[0] * (-1)**(len(x)+1) )[1:]
# polynomial lambda-function
poly = lambda _x: sum([C[i] * _x**i for i in range(len(x))])
# output and tests
print("Coefficients:\n", C)
print("TESTING:")
for _x, _y in zip(x, y):
result = "[OK]" if np.allclose(_y, poly(_x)) else "[ERROR]"
print(_x, " mapped to: ", poly(_x), " ; expected: ", _y, result)
This code calculates coefficients of the Lagrange interpolation polynomial, prints them, and tests that given x's are mapped into expected y's. You can test this code with Google colab, so you don't have to install anything. Probably, you can translate it to JS.
来源:https://stackoverflow.com/questions/9860937/how-to-calculate-coefficients-of-polynomial-using-lagrange-interpolation