Rearrange columns of numpy 2D array

拜拜、爱过 提交于 2019-11-26 15:52:13

问题


Is there a way to change the order of the columns in a numpy 2D array to a new and arbitrary order? For example, I have an array

array([[10, 20, 30, 40, 50],
       [ 6,  7,  8,  9, 10]])

and I want to change it into, say

array([[10, 30, 50, 40, 20],
       [ 6,  8, 10,  9,  7]])

by applying the permutation

0 -> 0
1 -> 4
2 -> 1
3 -> 3
4 -> 2

on the columns. In the new matrix, I therefore want the first column of the original to stay in place, the second to move to the last column and so on.

Is there a numpy function to do it? I have a fairly large matrix and expect to get even larger ones, so I need a solution that does this quickly and in place if possible (permutation matrices are a no-go)

Thank you.


回答1:


This is possible using fancy indexing:

>>> import numpy as np
>>> a = np.array([[10, 20, 30, 40, 50],
...               [ 6,  7,  8,  9, 10]])
>>> your_permutation = [0,4,1,3,2]
>>> i = np.argsort(your_permutation)
>>> i
array([0, 2, 4, 3, 1])
>>> a[:,i]
array([[10, 30, 50, 40, 20],
       [ 6,  8, 10,  9,  7]])

Note that this is a copy, not a view. An in-place permutation is not possible in the general case, due to how numpy arrays are strided in memory.




回答2:


I have a matrix based solution for this, by post-multiplying a permutation matrix to the original one. This changes the position of the elements in original matrix

import numpy as np

a = np.array([[10, 20, 30, 40, 50],
       [ 6,  7,  8,  9, 10]])

# Create the permutation matrix by placing 1 at each row with the column to replace with
your_permutation = [0,4,1,3,2]

perm_mat = np.zeros((len(your_permutation), len(your_permutation)))

for idx, i in enumerate(your_permutation):
    perm_mat[idx, i] = 1

print np.dot(a, perm_mat)


来源:https://stackoverflow.com/questions/20265229/rearrange-columns-of-numpy-2d-array

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!