Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Example 1:
Input: [1,3,4,2,2] Output: 2
Example 2:
Input: [3,1,3,4,2] Output: 3
Note:
- You must not modify the array (assume the array is read only).
- You must use only constant, O(1) extra space.
- Your runtime complexity should be less than O(n2).
- There is only one duplicate number in the array, but it could be repeated more than once.
class Solution { public int findDuplicate(int[] nums) { Arrays.sort(nums); for (int i = 1; i < nums.length; i++) { if (nums[i] == nums[i-1]) { return nums[i]; } } return -1; } }
class Solution { public int findDuplicate(int[] nums) { Set<Integer> seen = new HashSet<Integer>(); for (int num : nums) { if (seen.contains(num)) { return num; } seen.add(num); } return -1; } }
class Solution { public int findDuplicate(int[] nums) { // Find the intersection point of the two runners. int tortoise = nums[0]; int hare = nums[0]; do { tortoise = nums[tortoise]; hare = nums[nums[hare]]; } while (tortoise != hare); // Find the "entrance" to the cycle. int ptr1 = nums[0]; int ptr2 = tortoise; while (ptr1 != ptr2) { ptr1 = nums[ptr1]; ptr2 = nums[ptr2]; } return ptr1; } }
有意思,龟兔赛跑,说是有点像https://leetcode.com/problems/linked-list-cycle-ii/