Partially specialize methods of variadic template classes

自作多情 提交于 2019-12-02 08:28:09

I have always felt that the most maintainable way to specialise a member function is to defer to a specialised function object:

#include <iostream>

struct object_array
{
};


template<class...Ts>
struct implement_do_emit
{
    template<class This>
    void operator ()(This *that, const object_array& arg) const;
};


template<class... Ts>
struct MsgpackAdapter
{
    friend class implement_do_emit<Ts...>;

    virtual void do_emit(const object_array& mp_args)
    {
        auto impl = implement_do_emit<Ts...>();
        impl(this, mp_args);
    }

};

template<class T>
struct implement_do_emit<T>
{
    template<class This>
    void operator ()(This *that, const object_array& arg) const
    {
        std::cout << "one type version\n";
    }
};

template<class T1, class T2>
struct implement_do_emit<T1, T2>
{
    template<class This>
    void operator ()(This *that, const object_array& arg) const
    {
        std::cout << "two type version\n";
    }
};


int main()
{
    MsgpackAdapter<int> pi {};
    pi.do_emit(object_array());

    MsgpackAdapter<int, int> pii {};
    pii.do_emit(object_array());
}

In C++14:

template<class F>
auto foreach( F&& f ) {
  return [f=std::forward<F>(f)](auto&&...args)mutable{
    using discard=int[];
    (void)discard{0,(void(
      f(decltype(args)(args))
    ),0)...};
  };
}
template<std::size_t...Is>
auto index_over( std::index_sequence<Is...> ) {
  return [](auto&& f)->decltype(auto){
    return decltype(f)(f)( std::integral_constant<std::size_t, Is>{}... );
  };
}
template<std::size_t N>
auto index_upto( std::integral_constant<std::size_t, N> ={} ) {
  return index_over( std::make_index_sequence<N>{} );
}


template<class...Ts>
void MsgpackAdapter<Ts...>::do_emit (const msgpack::object_array &mp_args)
{
  std::tuple<Ts...> args;
  index_upto<sizeof...(Ts)>()(
    foreach(
      [&](auto I){
        mp_args.ptr[I].convert(std::get<I>(args));
      }
    )
  );
  index_upto<sizeof...(Ts)>()(
    [&](auto...Is){
      signal_.emit(std::get<Is>(args)...);
    }
  );
}

or somesuch. Live example.

Basically, make a tuple.

Create a pack of indexes into that tuple.

For each index into the tuple, call convert.

Then, call emit getting each element of the tuple.

There are many examples of code on stack overflow that involve passing each argument of a tuple to a function call. That is the emit part.

There are many examples on stack overflow of doing something for each element of a tuple. Doing so with an index is a bit trickier, but at worst you can count if the for each element does things in order.

These can be done in C++11, but in C++14 I can do it all in the function without helper functions.


Description of the above magic code. index_upto returns a lambda. This lambda takes another lambda, then calls it with compile time constants from 0 up to N-1. It does this by calling index_over, which takes a list of indexes.

foreach takes a lambda f. It then returns a lambda that takes any number of arguments, and calls the f once with each one of those arguments. Its implementation is a bit deep mojo involving parameter packs and array initialization.

Composing index_upto and foreach lets you do something for each compile-time value from 0 to N-1. This is how we call .convert.

Just calling index_upto lets us pass all of the arguments at once to emit.


We can do something similar in C++11, but we'd instead write helper functions that take parameter packs and such. It is more than a bit of a pain.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!