I try to hatch only the regions where I have statistically significant results. How can I do this using Basemap and pcolormesh?
plt.figure(figsize=(12,12))
lons = iris_cube.coord('longitude').points
lats = iris_cube.coord('latitude').points
m = Basemap(llcrnrlon=lons[0], llcrnrlat=lats[0], urcrnrlon=lons[-1], urcrnrlat=lats[-1], resolution='l')
lon, lat = np.meshgrid(lons, lats)
plt.subplot(111)
cs = m.pcolormesh(lon, lat, significant_data, cmap=cmap, norm=norm, hatch='/')
It seems pcolormesh
does not support hatching (see https://github.com/matplotlib/matplotlib/issues/3058). Instead, the advice is to use pcolor
, which starting from this example would look like,
import matplotlib.pyplot as plt
import numpy as np
dx, dy = 0.15, 0.05
y, x = np.mgrid[slice(-3, 3 + dy, dy),
slice(-3, 3 + dx, dx)]
z = (1 - x / 2. + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)
z = z[:-1, :-1]
zm = np.ma.masked_less(z, 0.3)
cm = plt.pcolormesh(x, y, z)
plt.pcolor(x, y, zm, hatch='/', alpha=0.)
plt.colorbar(cm)
plt.show()
where a mask array is used to get the values of z greater than 0.3 and these are hatched using pcolor
.
To avoid plotting another colour over the top (so you get only hatching) I've set alpha to 0. in pcolor
which feels a bit like a hack. The alternative is to use patch and assign to the areas you want. See this example Python: Leave Numpy NaN values from matplotlib heatmap and its legend. This may be more tricky for basemaps, etc than just choosing areas with pcolor
.
来源:https://stackoverflow.com/questions/41664850/hatch-area-using-pcolormesh-in-basemap