四边形优化DP学习
转自:http://www.cnblogs.com/hadilo/p/5800306.html 在动态规划中,经常遇到形如下式的状态转移方程: m(i,j)=min{m(i,k-1),m(k,j)}+w(i,j)(i≤k≤j)(min也可以改为max) 上述的m(i,j)表示区间[i,j]上的某个最优值。w(i,j)表示在转移时需要额外付出的代价。该方程的时间复杂度为O(N 3 ) 下面我们通过四边形不等式来优化上述方程,首先介绍什么是“区间包含的单调性”和“四边形不等式” 1、区间包含的单调性:如果对于 i≤i'<j≤j',有 w(i',j)≤w(i,j'),那么说明w具有区间包含的单调性。(可以形象理解为如果小区间包含于大区间中,那么小区间的w值不超过大区间的w值) 2、四边形不等式:如果对于 i≤i'<j≤j',有 w(i,j)+w(i',j')≤w(i',j)+w(i,j'),我们称函数w满足四边形不等式。(可以形象理解为两个交错区间的w的和不超过小区间与大区间的w的和) 下面给出两个定理: 1、如果上述的 w 函数同时满足区间包含单调性和四边形不等式性质,那么函数 m 也满足四边形不等式性质 我们再定义 s(i,j) 表示 m(i,j) 取得最优值时对应的下标(即 i≤k≤j 时,k 处的 w 值最大,则 s