透彻理解高斯分布
正态分布是与中的定量现象的一个方便模型。各种各样的心理学测试分数和现象比如计数都被发现近似地服从正态分布。 开始前,先看几个重要概念: 概率函数: 把事件概率表示成关于事件变量的函数 概率分布函数: 一个随机变量ξ取值小于某一数值x的概率,这概率是x的函数,称这种函数为随机变量ξ的分布函数,简称分布函数,记作F(x),即F(x)=P(ξ<x) (-∞<x<+∞),由它并可以决定随机变量落入任何范围内的概率。 概率密度函数: 概率密度等于变量在一个区间(事件的取值范围)的总的概率除以该段区间的长度。 概率密度函数是一个描述随机变量在某个确定的取值点附近的可能性的函数。 概率分布函数与概率密度函数的关系: 连续型随机变量X的概率分布函数F(x),如果存在非负可积函数f(x),使得对任意实数x,有 f(x)为X的概率密度 高斯分布 通过概率密度函数来定义高斯分布: 高斯分布的概率密度函数是: 均值为μ,标准差为σ 高斯分布的概率分布函数是: 高斯分布标准差在概率密度分布的数据意义 高斯分布重要量的性质 密度函数关于平均值对称 平均值是它的众数(statistical mode)以及中位数(median) 函数曲线下68.268949%的面积在平均值左右的一个标准差范围内 95.449974%的面积在平均值左右两个标准差2σ的范围内 99.730020