原子能

详解TF-IDF

我们两清 提交于 2019-12-23 04:04:26
目录 什么是TF-IDF 怎么计算 举例 例1 例2 代码例子 什么是TF-IDF TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。TF意思是词频(Term Frequency),IDF意思是逆文本频率指数(Inverse Document Frequency)。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。 看看 官网 的解释: Tf-idf stands for term frequency-inverse document frequency, and the tf-idf weight is a weight often used in information retrieval and text mining. This weight is a statistical measure used to evaluate how important a word is to a document in a collection or corpus. The importance increases proportionally to the

TF-IDF及其算法

我们两清 提交于 2019-12-22 00:09:08
TF-IDF及其算法 概念 TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的 常用加权技术 。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。 字词的重要性随着它在文件中出现的次数成正比增加 ,但同时会 随着它在语料库中出现的频率成反比下降 。TF-IDF加权的各种形式常被搜寻引擎应用,作为文件与用户查询之间相关程度的度量或评级。除了TF-IDF以外,因特网上的搜寻引擎还会使用基于连结分析的评级方法,以确定文件在搜寻结果中出现的顺序。    原理 在一份给定的文件里, 词频 (term frequency, TF) 指的是某一个给定的词语在该文件中出现的次数。这个数字通常会被 归一化(分子一般小于分母 区别于IDF) ,以防止它偏向长的文件。(同一个词语在长文件里可能会比短文件有更高的词频,而不管该词语重要与否。)    逆向文件频率 (inverse document frequency, IDF) 是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到。   某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF

TF-IDF算法原理

▼魔方 西西 提交于 2019-11-28 17:36:54
转自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/17/2595249.html wikipedia:https://en.wikipedia.org/wiki/Tf%E2%80%93idf 概念 TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜寻引擎应用,作为文件与用户查询之间相关程度的度量或评级。除了TF-IDF以外,因特网上的搜寻引擎还会使用基于连结分析的评级方法,以确定文件在搜寻结果中出现的顺序。    原理 在一份给定的文件里, 词频 (term frequency, TF) 指的是某一个给定的词语在该文件中出现的次数。这个数字通常会被归一化(分子一般小于分母 区别于IDF),以防止它偏向长的文件。(同一个词语在长文件里可能会比短文件有更高的词频,而不管该词语重要与否。)    逆向文件频率 (inverse document frequency, IDF) 是一个词语普遍重要性的度量

TF-IDF算法原理

↘锁芯ラ 提交于 2019-11-28 17:36:43
原文: https://www.cnblogs.com/biyeymyhjob/archive/2012/07/17/2595249.html   TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。 字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降 。TF-IDF加权的各种形式常被搜寻引擎应用,作为文件与用户查询之间相关程度的度量或评级。除了TF-IDF以外,因特网上的搜寻引擎还会使用基于连结分析的评级方法,以确定文件在搜寻结果中出现的顺序。    原理:      在一份给定的文件里, 词频 (term frequency, TF) 指的是某一个给定的词语在该文件中出现的次数。这个数字通常会被归一化(分子一般小于分母 ,区别于IDF),以防止它偏向长的文件。同一个词语在长文件里可能会比短文件有更高的词频,而不管该词语重要与否。 逆向文件频率 (inverse document frequency, IDF) 是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到。