什么是中心极限定理?这里有一份可视化解释
作者: Mike Freeman 编译: Bot 编者按:中心极限定理是概率论中的一组重要定理,它的中心思想是无论是什么分布的数据,当我们从中抽取相互独立的随机样本,且采集的样本足够多时,样本均值的分布将收敛于正态分布。为了帮助更多学生理解这个概念,今天,UW iSchool的教师Mike Freeman制作了一些直观的可视化图像,让不少统计学教授大呼要把它们用在课堂上。 本文旨在尽可能直观地解释统计学基础理论之一——中心极限定理的核心概念。通过下文中的一系列动图,读者应该能真正理解这个定理,并从中汲取应用灵感,把它用于决策树等其他项目。 需要注意的是,这里我们不会介绍具体推理过程,所以它不涉及定理解释。 教科书上的中心极限定理 在看可视化前,我们先来回顾一下统计学课程对中心极限定理的描述。 来源:LthID n>30一般为大样本的分界线 来源:LthID 一个简单的例子 为了降低这个定理的理解门槛,首先我们来举个简单的例子。假设有一个包含100人的团体,他们在某些问题上的意见分布在0-100之间。如果以可视化的方式把他们的意见分数表示在水平轴上,我们可以得到下面这幅图:深色竖线表示所有人意见分数的平均值。 假如你是一名社会科学家,你想知道这个团体的立场特点,并用一些信息,比如上面的“平均意见得分”来描述他们。但可惜的是,由于时间、资金有限,你没法一一询问。这时候