Keras学习手册(三),开始使用 Keras 函数式 API
感谢作者分享- http://bjbsair.com/2020-04-07/tech-info/30658.html Keras 函数式 API 是定义复杂模型(如多输出模型、有向无环图,或具有共享层的模型)的方法。 这部分文档假设你已经对 Sequential 顺序模型比较熟悉。 让我们先从一些简单的例子开始。 例一:全连接网络 Sequential 模型可能是实现这种网络的一个更好选择,但这个例子能够帮助我们进行一些简单的理解。 网络层的实例是可调用的,它以张量为参数,并且返回一个张量 输入和输出均为张量,它们都可以用来定义一个模型(Model) 这样的模型同 Keras 的 Sequential 模型一样,都可以被训练 from keras.layers import Input, Dense from keras.models import Model # 这部分返回一个张量 inputs = Input(shape=(784,)) # 层的实例是可调用的,它以张量为参数,并且返回一个张量 x = Dense(64, activation='relu')(inputs) x = Dense(64, activation='relu')(x) predictions = Dense(10, activation='softmax')(x) #