CVPR2017部分论文简介
文献 概述 研究内容 数据集 年份 运动物体检测内容 Learning Motion Patterns in Videos 学习视频中的运动模式,建立运动模式网络输入图像光流图输出视频中运动的物体,即使相机是移动的 运动相机检测运动物体 DAVIS 2017 Learning Features by Watching Objects Move 我们在视频中使用无监督的基于模式的分割来获取片段,我们将其用作“伪地真相”来训练一个卷积网络从一个帧中分割对象 运动物体检测 Optical Flow in Mostly Rigid Scenes 自然场景的光流是观察者运动和物体独立运动的结合,现有的算法通常侧重于在纯静态世界或一般无约束场景的光流的假设下恢复运动和结构。此文章从外观和物理约束中对移动对象进行显式的分割,在静态区域,我们利用强大的约束条件,在多个帧上联合估计摄像机的运动和场景的三维结构。https://www.youtube.com/watch?v=N7a3AZEi-c4视频 光流法估计运动物体 KITTI CVPR2017 MODNet: Moving Object Detection Network with Motion and Appearance for Autonomous Driving 无人驾驶中的目标检测。提出了一种新的多任务学习系统,它结合了外观和运动提示