先验概率

【机器学习基本理论】详解最大后验概率估计(MAP)的理解

守給你的承諾、 提交于 2019-11-29 04:35:30
【机器学习基本理论】详解最大后验概率估计(MAP)的理解 https://blog.csdn.net/weixin_42137700/article/details/81628065 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们。 下文将详细说明MLE和MAP的思路与区别。上篇讲解了MLE的相应知识。【机器学习基本理论】详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解 下面讲解最大后验概率MAP的相关知识。 1最大后验概率估计 最大似然估计是求参数theta, 使似然函数p(x0|theta)最大。 最大后验概率估计则是想求theta使得p(x0|theta)p(theta)最大。 求得的theta不单单让似然函数大,theta自己出现的先验概率也得大。 (这有点像正则化里加惩罚项的思想,不过正则化里是利用加法,而MAP里是利用乘法) MAP其实是在最大化p(theta|x0)=p(x0|theta)p(theta)/p(x0),不过因为x0是确定的(即投出的“反正正正正反正正正反”),p(x0)是一个已知值,所以去掉了分母p(x0) (假设

4 朴素贝叶斯法

时光毁灭记忆、已成空白 提交于 2019-11-27 21:48:41
朴素贝叶斯法 朴素贝叶斯(naïve Bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法,是一种生成模型。 朴素贝叶斯法的学习与分类 基本方法 朴素贝叶斯法通过训练数据集学习联合概率分布 P(X,Y)。具体地,学习先验概率分布 P(Y=c k )及条件概率分布 P(X=x|Y=c k )。于是得到联合概率分布 P(X=x,Y=y)=P(X=x|Y=y)• P(Y=y) 先验概率:事件发生前的预判概率,一般都是单独事件概率。如 P(Y)或 P(X) 后验概率:事件发生后求的反向条件概率;或者说,基于先验概率求得的反向条件概率。如 P(Y|X) 条件概率:一个事件发生后另一个事件发生的概率。如 P(X|Y) 实例:假设y是文章种类,是一个枚举值;x是向量,表示文章中各个单词的出现次数。 在拥有训练集的情况下,显然除了后验概率P(y|x)中的x来自一篇新文章无法得到,p(x),p(y),p(x|y)都是可以在抽样集合上统计出的。 两者之间的关系:先验概率是获得后验概率的前提。 朴素贝叶斯法对条件概率分布作了条件独立性的假设: 朴素贝叶斯法分类时,对给定的输入x,通过学习到的模型计算后验概率分布P(Y=c k |X=x),将后验概率最大的类作为x的类输出。后验概率计算根据贝叶斯定理进行: 于是,朴素贝叶斯分类器可表示为 : 注意到,在上式中分母对所有C k 都是相同的,所以

机器学习(朴素贝叶斯)

时光总嘲笑我的痴心妄想 提交于 2019-11-27 15:47:14
参考 http://blog.csdn.net/c406495762 1.了解概率论的相关知识(条件概率、全概率、先验概率,后验概率等) 2.朴素贝叶斯 将实例分到 后验概率最大的类(等价于期望风险最小化,看绿皮书61页),这就是原理 3.后验概率: B事件发生之后,我们对A事件概率的重新评估。P(A|B) 4.在实际的编程中,在做分类的饿时候,我们只是需要比较概率的大小,而两者分母一致,故只需要计算分子的大小。 5.朴素贝叶斯,特征之间是相互独立的。 来源: https://blog.csdn.net/weixin_43384504/article/details/99692660

详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解(转)

99封情书 提交于 2019-11-26 15:16:42
声明:本文为原创文章,发表于nebulaf91的csdn博客。欢迎转载,但请务必保留本信息,注明文章出处。 本文作者: nebulaf91 本文原始地址:http://blog.csdn.net/u011508640/article/details/72815981 频率学派与贝叶斯派 在说极大似然估计(Maximum Likelihood Estimate)与最大后验概率估计(Maximum A Posteriori estimation)之前,不得不说对于概率看法不同的两大派别频率学派与贝叶斯派。他们看待世界的视角不同,导致他们对于产生数据的模型参数的理解也不同。 ① 频率学派 他们认为世界是确定的。他们直接为事件本身建模,也就是说事件在多次重复实验中趋于一个稳定的值p,那么这个值就是该事件的概率。 他们认为模型参数是个定值,希望通过类似解方程组的方式从数据中求得该未知数。这就是频率学派使用的参数估计方法-极大似然估计(MLE),这种方法往往在大数据量的情况下可以很好的还原模型的真实情况。 ② 贝叶斯派 他们认为世界是不确定的,因获取的信息不同而异。假设对世界先有一个预先的估计,然后通过获取的信息来不断调整之前的预估计。 他们不试图对事件本身进行建模,而是从旁观者的角度来说。因此对于同一个事件,不同的人掌握的先验不同的话,那么他们所认为的事件状态也会不同。