线性拟合

Matlab 线性拟合 & 非线性拟合

匆匆过客 提交于 2020-04-06 20:17:53
使用Matlab进行拟合是图像处理中线条变换的一个重点内容,本文将详解Matlab中的直线拟合和曲线拟合用法。 关键函数: fittype Fit type for curve and surface fitting Syntax ffun = fittype(libname) ffun = fittype(expr) ffun = fittype({expr1,...,exprn}) ffun = fittype(expr, Name, Value,...) ffun= fittype({expr1,...,exprn}, Name, Value,...) /***********************************线性拟合***********************************/ 线性拟合公式: coeff1 * term1 + coeff2 * term2 + coeff3 * term3 + ... 其中,coefficient是系数,term都是x的一次项。 线性拟合Example: Example1: y=kx+b; 法1: [csharp] view plain copy x=[1,1.5,2,2.5,3];y=[0.9,1.7,2.2,2.6,3]; p=polyfit(x,y,1); x1=linspace(min(x),max(x));

过拟合和欠拟合

雨燕双飞 提交于 2020-04-06 09:37:59
本文首发自公众号: RAIS ​前言 本系列文章为 《Deep Learning》 读书笔记,可以参看原书一起阅读,效果更佳。 构建复杂的机器学习算法 上一篇文章中我们介绍了什么叫做机器学习算法极其具体的定义和所关心的问题,比较简单,接下来的文章我们将介绍一些设计学习算法的基本准则。 误差 泛化:机器学习的目的是在新的输入上具有良好的表现,而不是已有的数据,这很好理解,在新的数据上表现良好的能力叫做 泛化 。 在机器学习中,总是存在误差的,百分之百的确定的事件已经不是机器学习研究的范围了。既然如此,就一定存在误差,训练过程在训练集上误差称作 训练误差 ,泛化后的在新的输入上的误差称为 泛化误差 或 测试误差 。我们都希望误差尽可能的小,并且相比较而言泛化误差减小更重要(毕竟解决问题才是最重要的)。 这里会遇到一个问题就是我们往往只能得到训练数据集,没有什么好的办法提前获取模型交付生产环境后所新输入的数据,针对这样的问题,我们往往在收集统计训练数据时,尽量接近实际生产环境,并且假设数据之间是 独立同分布 的,称为 数据生成分布 ,基于这样的原因,我们会假设训练误差和测试误差两者的期望是一样的。因此我们针对数据集,具体的做法就会是先尽可能的减小 训练误差 ,让模型在已有的数据上表现良好,然后再尽可能减小 测试误差 与训练误差之间的差距,这样就会得到一个测试误差较低的模型。

线性回归(regression)

一曲冷凌霜 提交于 2020-04-06 04:30:56
简介 回归分析只涉及到两个变量的,称一元回归分析。一元回归的主要任务是从两个相关变量中的一个变量去估计另一个变量,被估计的变量,称因变量,可设为Y;估计出的变量,称自变量,设为X。 回归分析就是要找出一个数学模型Y=f(X),使得从X估计Y可以用一个函数式去计算。 当Y=f(X)的形式是一个直线方程时,称为一元线性回归。这个方程一般可表示为Y=A+BX。根据最小平方法或其他方法,可以从样本数据确定常数项A与回归系数B的值。 线性回归方程 Target:尝试预测的变量,即目标变量 Input:输入 Slope:斜率 Intercept:截距 举例,有一个公司,每月的广告费用和销售额,如下表所示: 如果把广告费和销售额画在二维坐标内,就能够得到一个散点图,如果想探索广告费和销售额的关系,就可以利用一元线性回归做出一条拟合直线: 有了这条拟合线,就可以根据这条线大致的估算出投入任意广告费获得的销售额是多少。 评价回归线拟合程度的好坏 我们画出的拟合直线只是一个近似,因为肯定很多的点都没有落在直线上,那么我们的直线拟合的程度如何,换句话说,是否能准确的代表离散的点?在统计学中有一个术语叫做R^2(coefficient ofdetermination,中文叫判定系数、拟合优度,决定系数),用来判断回归方程的拟合程度。 要计算R^2首先需要了解这些: 总偏差平方和(又称总平方和,SST

ML_6机器学习重要概念补充

老子叫甜甜 提交于 2020-04-05 17:14:40
学习目标 sklearn中的Pipeline 偏差与方差 模型正则化之L1正则、L2正则 一、sklearn中的Pipeline 研究一个因变量与一个或多个自变量间多项式的回归分析方法,称为多项式回归(Polynomial Regression)。多项式回归是线性回归模型的一种,其回归函数关于回归系数是线性的。其中自变量x和因变量y之间的关系被建模为n次多项式。 如果自变量只有一个时,称为一元多项式回归;如果自变量有多个时,称为多元多项式回归。在一元回归分析中,如果变量y与自变量x的关系为非线性的,但是又找不到适当的函数曲线来拟合,则可以采用一元多项式回归。 由于任一函数都可以用多项式逼近,因此多项式回归有着广泛应用。 多项式回归的思路是:添加一个特征,即对于X中的每个数据进行平方。 import numpy as np import matplotlib.pyplot as plt x = np.random.uniform(-3, 3, size=100) X = x.reshape(-1, 1) y = 0.5 + x**2 + x + 2 + np.random.normal(0, 1, size=100) plt.scatter(x, y) plt.show() from sklearn.linear_model import LinearRegression lin

关于数据

a 夏天 提交于 2020-03-25 21:01:28
数据是一切的根本。 一.获取数据 1.可以使用爬虫scrapy获取数据,但是更一般的是自家数据库中的数据 2.可以获得公用数据集: http://www.kaggle.com/datasets 等网站 3.可以自己创建虚拟数据 4.注意:1)数据量尽可能多、利于训练,(2)数据内容尽可能有效,能对预测产生作用(有用的特征),(3)数据尽可能要均匀(分类),即全面 5.注意:无论是数据获取还是处理,都要注意多做备份,有能力每步都要备份,数据的价值难以想象。 二.原始数据 1.数据的本质是信息的具体化,原始数据有很多种:数字、文字、图片....我们可以从这些数据中看出里面所包含的信息。 2.计算机接收进行处理的是数字,根据经验,把原始数据转换为数字是比较容易的(比如把图片转化为矩阵的形式), 3.我们得到的原始数据可能有这样那样的问题,所以要进行下一步的数据清洗 ------原始数据是杂乱的,含有不完整、重复、错误的数据,因此要先进行数据清洗------- 三.数据清洗(Data cleaning) 1.数据清洗是为了对数据进行重新审查和校验,目的在于删除重复信息、纠正存在的错误,并提供数据一致性 2.不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类 (1)缺失数据(数据为空Null):如果缺失数据的记录占比较小,可以直接剔除(主要包括删除样本或删除特征两种

Kriging插值法

非 Y 不嫁゛ 提交于 2020-03-21 06:00:28
克里金法是通过一组具有 z 值的分散点生成估计表面的高级地统计过程。与插值工具集中的其他插值方法不同,选择用于生成输出表面的最佳估算方法之前,有效使用 克里金法 工具涉及 z 值表示的现象的空间行为的交互研究。 什么是克里金法? IDW (反距离加权法)和 样条函数法 插 值工具被称为确定性插值方法,因为这些方法直接基于周围的测量值或确定生成表面的平滑度的指定数学公式。第二类插值方法由地统计方法(如克里金法)组成, 该方法基于包含自相关(即,测量点之间的统计关系)的统计模型。因此,地统计方法不仅具有产生预测表面的功能,而且能够对预测的确定性或准确性提供某种度 量。 克里金法假定采样点之间的距离或方向可以反映可用于说明表面变化的空间相关性。 克里金法 工 具可将数学函数与指定数量的点或指定半径内的所有点进行拟合以确定每个位置的输出值。克里金法是一个多步过程;它包括数据的探索性统计分析、变异函数建模 和创建表面,还包括研究方差表面。当您了解数据中存在空间相关距离或方向偏差后,便会认为克里金法是最适合的方法。该方法通常用在土壤科学和地质中。 克里金法公式 由于克里金法可对周围的测量值进行加权以得出未测量位置的预测,因此它与反距离权重法类似。这两种插值器的常用公式均由数据的加权总和组成: 其中: Z(s i ) = 第 i 个位置处的测量值 λ i = 第 i 个位置处的测量值的未知权重

画图解释机器学习中的过拟合和欠拟合,看不懂你打我

醉酒当歌 提交于 2020-02-21 05:38:44
文章目录 一张图看懂过拟合和欠拟合 过拟合 欠拟合 最佳拟合 过拟合原因以及解决办法 欠拟合原因以及解决办法 一张图看懂过拟合和欠拟合 过拟合 通俗解释:对训练的数据支持的非常非常好 定义:一个假设 在训练数据上能够获得比其他假设更好的拟合, 但是在测试数据集上却不能很好地拟合数据 ,此时认为这个假设出现了过拟合的现象。(模型过于复杂) 分类的训练数据: 下一次给你相同的数据,也测试的很好,准确率100% 来一个新数据 那我们说这个方块100%是红数据,这样是有错误率的 欠拟合 通俗解释:测啥啥不准 定义:一个假设 在训练数据上不能获得更好的拟合,并且在测试数据集上也不能很好地拟合数据 ,此时认为这个假设出现了欠拟合的现象。(模型过于简单) 最佳拟合 不考虑异常数据 过拟合原因以及解决办法 原因:原始特征过多,存在一些嘈杂特征, 模型过于复杂是因为模型尝试去兼顾各个测试数据点 解决办法: 1)重新清洗数据,导致过拟合的一个原因也有可能是数据不纯导致的,如果出现了过拟合就需要我们重新清洗数据。 2)增大数据的训练量,还有一个原因就是我们用于训练的数据量太小导致的,训练数据占总数据的比例过小。 3)减少特征维度,防止维灾难 4) 对于Knn来说,近邻的数量非常的重要 欠拟合原因以及解决办法 原因:学习到数据的特征过少 解决办法: 1)添加其他特征项

task03过拟合、欠拟合

生来就可爱ヽ(ⅴ<●) 提交于 2020-02-20 08:53:20
过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函数。 机器学习模型应关注降低泛化误差。 模型选择 验证数据集 从严格意义上讲,测试集只能在所有超参数和模型参数选定后使用一次。不可以使用测试数据选择模型,如调参。由于无法从训练误差估计泛化误差,因此也不应只依赖训练数据选择模型。鉴于此,我们可以预留一部分在训练数据集和测试数据集以外的数据来进行模型选择。这部分数据被称为验证数据集,简称验证集(validation set)。例如,我们可以从给定的训练集中随机选取一小部分作为验证集,而将剩余部分作为真正的训练集。 K折交叉验证 由于验证数据集不参与模型训练,当训练数据不够用时,预留大量的验证数据显得太奢侈。一种改善的方法是K折交叉验证(K-fold cross-validation)。在K折交叉验证中

动手学深度学习Task3

两盒软妹~` 提交于 2020-02-20 06:30:17
过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 1、过拟合和欠拟合 过拟合:模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合 欠拟合:模型训练误差无法降低. 如何应对欠拟合和过拟合?在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。 1.1.1、模型复杂度 为了解释模型复杂度,我们以多项式函数拟合为例。给定一个由标量数据特征 x 和对应的标量标签 y 组成的训练数据集,多项式函数拟合的目标是找一个 K 阶多项式函数 来近似y.在上式中,wk是模型的权重参数,b是偏差参数。与线性回归相同,多项式函数拟合也使用平方损失函数。特别地,一阶多项式函数拟合又叫线性函数拟合。 给定训练数据集,模型复杂度和误差之间的关系: 1.1.2、训练数据集过小 影响欠拟合和过拟合的另一个重要因素是训练数据集的大小。一般来说,如果训练数据集中样本数过少,特别是比模型参数数量(按元素计)更少时,过拟合更容易发生。此外,泛化误差不会随训练数据集里样本数量增加而增大。因此,在计算资源允许的范围之内,我们通常希望训练数据集大一些,特别是在模型复杂度较高时,例如层数较多的深度学习模型。 2、梯度消失、梯度爆炸 梯度消失和梯度下降原因 梯度消失和梯度爆炸两种情况产生的原因可以总结成2类原因:1.深层网络的结构;2.不合适的损失函数,比如Sigmoid函数

《动手学深度学习》第二次打卡

爷,独闯天下 提交于 2020-02-19 23:09:08
七、过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函数。 机器学习模型应关注降低泛化误差。 模型选择 验证数据集 从严格意义上讲,测试集只能在所有超参数和模型参数选定后使用一次。不可以使用测试数据选择模型,如调参。由于无法从训练误差估计泛化误差,因此也不应只依赖训练数据选择模型。鉴于此,我们可以预留一部分在训练数据集和测试数据集以外的数据来进行模型选择。这部分数据被称为验证数据集,简称验证集(validation set)。例如,我们可以从给定的训练集中随机选取一小部分作为验证集,而将剩余部分作为真正的训练集。 K折交叉验证 由于验证数据集不参与模型训练,当训练数据不够用时,预留大量的验证数据显得太奢侈。一种改善的方法是K折交叉验证(K-fold cross-validation)。在K折交叉验证中