基于深度学习的图像超分辨率方法 总结 2018.6
基于深度学习的SR方法 懒得总结,就从一篇综述中选取了一部分基于深度学习的图像超分辨率方法。 原文:基于深度学习的图像超分辨率复原研究进展 作者:孙旭 李晓光 李嘉锋 卓力 北京工业大学信号与信息处理研究室 来源:中国知网 1.基于前馈深度网络的方法 前馈深度网络是典型的深度学习模型之一。网络中各个神经元从输入层开始,接收前一级输入,并输入到下一级, 直至输出层。整个网络中无反馈, 可用一个有向无环图表示。 在深度学习的SR问题中,前馈深度网络能够较好地学习低分辨率图像到高分辨率图像之间的对应关系。在输入层中,它采用卷积的方法提取输入图像的局部特征模式,单向传递给隐含层, 随着隐含层网络层数的加深而学习得到更深层级的特征;最后,由输出层得到重建图像。典型的前馈深度网络包括多层感知器和卷积神经网络(CNN)。 按前馈深度网络的网络类型可以分为以下几类:基于卷积神经网络的方法 (Super resolution using convolution neural network,SRCNN) ;基于极深网络的方法 (Very deep networks for SR,VDSR) ;基于整合先验的卷积神经网络的方法 (SR-CNN with Prior,SRCNN-Pr) ;基于稀疏编码网络的方法(Sparse coding based network,SCN) 和基于卷积稀疏编码的方法