投影面积

读周志华《机器学习》个人读书笔记

匿名 (未验证) 提交于 2019-12-02 22:56:40
机器学习所研究的内容:是关于在计算机上通过数据产生“模型”的算法,即为“学习算法”(learning algorithm)。 “模型”指的就是学习所得的结果。 从数据中学得模型的过程称为“学习”或“训练”。 预测的若为离散值,此类学习任务称为“分类”(classification)若为连续值,此类学习任务称之为“回归”(regression)。涉及到两个类别的“二分类”(binary classification)任务,其中一个为“正类”(posive class),另一个为“反类”(negative class)。 根据训练数据是否拥有标记信息,学习任务分为:“监督学习”(supervise learning)和“无监督学习”(unsupervised learning)。分类回归是前者的代表,聚类(clustering)是后者的代表。 学得的模型适用于新样本的能力,称为“泛化”(generalization)能力。 归纳(induction)和演绎(deduction)。 归纳是从特殊到一般的泛化过程,即为从具体的事实中总结出一般的规律。演绎是从一般到特殊的“特化”(specialization)过程,即从基础原理推演出具体状况。 归纳学习有广义和狭义之分,广义的归纳学习相当于从样例中学习,而狭义的归纳学习则要求从训练数据中学得概念,又称为“概念学习”或“概念形成”。

地理坐标系与投影坐标系

江枫思渺然 提交于 2019-11-29 19:28:03
地理坐标系与投影坐标系 1.基本概念 地理坐标系:为球面坐标。 参考平面地是椭球面,坐标单位:经纬度; 投影坐标系:为平面坐标。参考平面地是水平面,坐标单位:米、千米等; 地理坐标转换到投影坐标的过程可理解为投影。(投影:将不规则的地球曲面转换为平面) 2、地理坐标系 2.1 地球的三级逼近 2.1.1大地水准面 地球的自然表面有高山也有洼地,是崎岖不平的,我们要使用数学法则来描述他,就必须找到一个相对规则的数学面。 大地水准面是地球表面的第一级逼近。假设当海水处于完全静止的平衡状态时,从海平面延伸到所有大陆下部,而与地球重力方向处处正交的一个连续、闭合的曲面,这就是大地水准面。 2.1.2地球椭球体 大地水准面可以近似成一个规则成椭球体,但并不是完全规则,其形状接近一个扁率极小的椭圆绕短轴旋转所形成的规则椭球体,这个椭球体称为地球椭球体。它是地球的第二级逼近。 下面列举了一些常见椭球体的参数。我国1952年以前采用海福特椭球体,从1953年起采用克拉索夫斯基椭球体。 1978年我国决定采用新椭球体GRS(1975),并以此建立了我国新的、独立的大地坐标系,对应ArcGIS里面的Xian_1980椭球体。从1980年开始采用新椭球体GRS(1980),这个椭球体参数与ArcGIS中的CGCS2000椭球体相同。 2.1.3大地基准面 确定了一个规则的椭球表面以后

车牌定位方法

两盒软妹~` 提交于 2019-11-28 04:47:13
摘要:针对现存车牌定位方法自适应性差和鲁棒性不强的情况,本文提出了一种新的快速自适应车牌定位算法.此算法结合图象中车牌区域的纹理特征、灰度和边缘投影信息定位车牌,经对不用场景、不同光照、不同车型的汽车图象的实验表明该算法具有快速,鲁棒性强,自适应性好的优点。 关键词:智能交通系统,车牌定位,纹理分析,灰度投影, 自适应 基于图象理解的汽车牌照自动识别系统是智能交通系统(ITS)的一个重要分支,有着非常广泛的应用前景,而把汽车牌照从复杂的汽车图象中分割出来是汽车牌照自动识别系统必须解决的关键问题。在过去的十几年中,各国的科研人员提出了不少提取汽车牌照的方法。Choi[1] 提出利用Hough变换寻找垂直边缘提取汽车牌照的方法,此方法由于许多汽车前部散热器产生的垂直边缘和某些牌照边框的扭曲或某些汽车牌照没有边框而鲁棒性较差。S.H.Park[2] 提出的一种基于神经网络提取汽车牌照的方法,使用二个时延神经网络在水平和垂直方向对输入的图象进行滤波,得到牌照的候选区域,然后利用牌照的长宽比、面积、面积与周长比来区分真正的牌照区域与类牌照区域。此方法要求图象中的牌照尺寸基本不变,一旦图象中的牌照尺寸发生了较大的变化,必须对神经网络重新进行训练。Barroso[5] 认为车牌区域具有较强的灰度变化特性,对图象分别做水平和垂直方向的投影,根据投影的波峰和波谷的特点来判断车牌区域的水平和垂直位置

沉浸式互动投影系统组成

做~自己de王妃 提交于 2019-11-27 22:13:41
沉浸式互动投影系统由硬件设备、软件程序及数字内容共同组成。软、硬件的合理搭配才能使投影达到沉浸式的效果,完成展示需求。 软件系统 投影系统: 用投影机来完成展示的好处很多,投射的面积更大、投射距离更远、光亮度很高。投影机一般都支持多灯泡模式,能够大程度适应各种安装环境,在展厅、展馆、教育、餐饮、娱乐等行业都能高质量完成展示任务。 融合系统 融合系统是多投影拼接必不可少的设备,主要分为融合软件和硬件融合两类,硬件融合造价相对较高,适用于超大型的展厅展馆,软件融合可以直接集成在服务器内,操作和维护都比较方便。 数字内容: 投影所投射的数字内容大多为个性化定制,根据需求选择不同的影片内容,根据影片清晰度、长度、复杂程度的不同价格也有很大的差异。 硬件系统 主服务器: 主服务器也被称作为中控主机,管理资源的同时为用户提供服务,运行应用程序软件的计算机配置低要求为: CPU:i5及i5以上 显卡:GTX750及以上的N卡 500G硬盘/4G运行内存/工控机箱 优势有:稳定、安全、性能高,且价格实惠。 显示设备: 投影幕:随着技术发不断发展,投影幕从开始的一面变成现在的环幕/弧幕/折幕等多种形式,能完成不同展厅展馆的环节要求,适用性很高。 拼接屏:拼接屏也是沉浸式展厅里面应用很多的现实设备,主要优点是清晰度高、可定制尺寸及拼接,集成电源、控制系统的应用也大程度缩减拼接屏的管理环节。 音箱系统:

空间规划师的坐标系转换手册(国家2000大地坐标系适用)(转载)

可紊 提交于 2019-11-26 17:01:12
声明:本文所指空间规划师特指城乡规划师,此处仅在标题名称提法上与国家空间规划体系改革相呼应,文中仍以规划师或城乡规划师相称,并无额外之意,请勿过度解读;封面图片来自于网络,版权归原作者所有。 随着自然资源部的成立以及“建立国家空间规划体系”的提出,无论是国土规划还是城乡规划都在向统一的空间规划体系转变升级。作为统一空间规划体系的重要事件,2018年7月1日起,自然资源部全面启用2000国家大地坐标系,以此作为统一空间规划的一致性空间参考体系,对于城乡空间规划的空间参考要求也将会越来越高,城乡规划师也需要逐步学会如何将多元数据在不同空间参考下进行转换,尤其是转换为国家2000大地坐标系,这就是作者撰写本文的初衷,本文命名为《空间规划师的坐标转换手册》,其实更像是一个入门介绍,并不像手册那么深入完善的面面俱到,主要是怕写的太深又把我们规划师朋友讲糊涂,本文重点是想让规划师能看懂,能理解坐标系及其转换的原理,但我还是保留了这个名字,一是本文主要针对城乡规划师,二是希望规划师朋友们能把它像手册一样收藏,有需要的时候就想手册一样把它打开看看能够解决疑惑。 本文不是一篇专业的坐标系理论学术文章,而是试图尽量避开参数堆叠,通过规划师能理解的语境(作者本人也是规划出身的业余GISer),对坐标系的原理进行简化讲解,并对坐标系定义和转换的方法进行概括梳理,以便规划师在日常工作中需要的时候参考阅读。

常用的一些GIS知识概念

和自甴很熟 提交于 2019-11-26 15:54:16
参考: https://www.jianshu.com/p/68288ff89ab4 作者:GIS前沿 来源:简书 目录: 1.经纬度与GCS(Geographic Coordinate System, 地理坐标系统)     1.1 参心坐标系、地心坐标系     1.2 我国常见GCS        1.2.1 北京54坐标系(参心)        1.2.2 西安80坐标系(参心)        1.2.3 WGS84坐标系(地心)        1.2.4 CGCS2000坐标系(地心) 2. 平面坐标与PCS(Projection Coordinate System, 投影坐标系统)     2.1 高斯克吕格投影/横轴墨卡托投影     2.2 墨卡托投影     2.3 通用横轴墨卡托投影(UTM投影)     2.4 Lambert投影     2.5 Albers投影     2.6 Web墨卡托(WebMercator投影) 3.坐标系的转换问题     3.1 GCS转GCS (地理坐标系之间的转换)     3.2 GCS转PCS(地理坐标系转投影坐标系)     3.3 PCS转PCS(重投影-投影坐标系之间的转换) 4.常用的一些GIS名词概念     4.1 地形图坐标系——中央经线、伪东、伪北     4.2 六度带、三度带     4.3