读周志华《机器学习》个人读书笔记
机器学习所研究的内容:是关于在计算机上通过数据产生“模型”的算法,即为“学习算法”(learning algorithm)。 “模型”指的就是学习所得的结果。 从数据中学得模型的过程称为“学习”或“训练”。 预测的若为离散值,此类学习任务称为“分类”(classification)若为连续值,此类学习任务称之为“回归”(regression)。涉及到两个类别的“二分类”(binary classification)任务,其中一个为“正类”(posive class),另一个为“反类”(negative class)。 根据训练数据是否拥有标记信息,学习任务分为:“监督学习”(supervise learning)和“无监督学习”(unsupervised learning)。分类回归是前者的代表,聚类(clustering)是后者的代表。 学得的模型适用于新样本的能力,称为“泛化”(generalization)能力。 归纳(induction)和演绎(deduction)。 归纳是从特殊到一般的泛化过程,即为从具体的事实中总结出一般的规律。演绎是从一般到特殊的“特化”(specialization)过程,即从基础原理推演出具体状况。 归纳学习有广义和狭义之分,广义的归纳学习相当于从样例中学习,而狭义的归纳学习则要求从训练数据中学得概念,又称为“概念学习”或“概念形成”。