条件随机场简介
之前学习了隐马尔可夫模型,现在记录一下条件随机场。本文主要参考了《统计学习方法》,如有错误,请各位多多指教 1、什么是条件随机场 首先我们先了解什么是随机场。 在概率论中,随机场的定义为:由 样本空间 Ω = {0, 1, ..., G − 1}n取样构成的 随机变量 Xi所组成的S = {X1, ..., Xn}。若对所有的ω∈Ω下式均成立,则称π为一个随机场。更直白一点的理解是随机场是由若干个位置组成的整体,当给每一个位置中按照某种分布随机赋予一个值之后,其全体就叫做随机场。就如一句话对他进行词性标注,先不论对错,只要对每个词标注了就形成一个随机场。 接着我们来了解什么是马尔科夫随机场。 先看《统计学习方法》中对马尔科夫随机场的定义。 概率无向图模型,又称为马尔可夫随机场,是一个可以由无向图表示的联合概率分布。 图(graph)是由结点(node)及连接结点的边(edge)组成的集合。结点和边分别记作 v 和 e,结点和边的集合分别记作 V 和 E,图记作G=(V,E)。无向图是指边没有方向的图。设有联合概率分布P(Y),Y是一组随机变量。由无向图G=(V,E)表示概率分布P(Y),即在图G中,每个结点 v 表示一个随机变量Yv;每条边e表示随机变量之间的概率依赖关系。 定义:设有联合概率分布P(Y)由无向图G=(V,E)表示,在图G中,结点表示随机变量