Create a custom federated data set in TensorFlow Federated
问题 I'd like to adapt the recurrent autoencoder from this blog post to work in a federated environment. I've modified the model slightly to conform with the example shown in the TFF image classification tutorial. def create_compiled_keras_model(): model = tf.keras.models.Sequential([ tf.keras.layers.LSTM(2, input_shape=(10, 2), name='Encoder'), tf.keras.layers.RepeatVector(10, name='Latent'), tf.keras.layers.LSTM(2, return_sequences=True, name='Decoder')] ) model.compile(loss='mse', optimizer=