机器学习(5)之集成学习(RF\\AdaBoost\\GBDT)
目录 1 集成学习的思想 1.1 Bagging简介 1.2 Boosting简介 1.3 Stacking简介 2 随机森林(Random Forest) 2.1 算法流程 2.3 TRTE 2.4 Isolation Forest(IForest) 2.5 RF随机森林的优缺点 3 AdaBoost 3.1 算法原理 3.2 算法的构建过程 3.3 总结 4 GBDT 4.1 算法原理 4.2 GBDT回归算法和分类算法 4.3 总结 1 集成学习的思想 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器。弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < 0.5)。 集成算法的成功在于保证弱分类器的多样性(Diversity)。而且集成不稳定的算法也能够得到一个比较明显的性能提升。 常见的集成学习思想有:Bagging、Boosting、Stacking 1.1 Bagging简介 Bagging方法又叫做自举汇聚法(Bootstrap Aggregating), 思想 :在原始数据集上通过 有放回的抽样 的方式,重新选择出S个新数据集来分别训练S个分类器的集成技术。也就是说这些模型的训练数据中允许存在重复数据。 Bagging方法训练出来的模型在预测新样本分类的时候,会使用 多数投票或者求均值