Python & 机器学习之项目实践
机器学习是一项经验技能,经验越多越好。在项目建立的过程中,实践是掌握机器学习的最佳手段。在实践过程中,通过实际操作加深对分类和回归问题的每一个步骤的理解,达到学习机器学习的目的。 预测模型项目模板 不能只通过阅读来掌握机器学习的技能,需要进行大量的练习。本文将介绍一个通用的机器学习的项目模板,创建这个模板总共有六个步骤。通过本文将学到: 端到端地预测(分类与回归)模型的项目结构。 如何将前面学到的内容引入到项目中。 如何通过这个项目模板来得到一个高准确度的模板。 机器学习是针对数据进行自动挖掘,找出数据的内在规律,并应用这个规律来预测新数据,如图19-1所示。 图19-1 在项目中实践机器学习 端到端地解决机器学习的问题是非常重要的。可以学习机器学习的知识,可以实践机器学习的某个方面,但是只有针对某一个问题,从问题定义开始到模型部署为止,通过实践机器学习的各个方面,才能真正掌握并应用机器学习来解决实际问题。 在部署一个项目时,全程参与到项目中可以更加深入地思考如何使用模型,以及勇于尝试用机器学习解决问题的各个方面,而不仅仅是参与到自己感兴趣或擅长的方面。一个很好的实践机器学习项目的方法是,使用从 UCI机器学习仓库(http://archive.ics.uci.edu/ml/datasets.html) 获取的数据集开启一个机器学习项目。如果从一个数据集开始实践机器学习