adam调参
微调 #阿尔法 "learning_rate": 3e-5, #学习率衰减 "weight_decay": 0.1, // "weight_decay": 0.01, "clip_grad": 2, "batch_size": 30, "epoch_num": 1, "min_epoch_num": 1, "patience": 0.02, "patience_num": 3, "epsilon": 10e-8 # 防止除以零 如果不是微调 学习率和学习率的衰减率 都要增大 https://juejin.im/entry/5983115f6fb9a03c50227fd4 深度学习最常用的算法:Adam优化算法 阅读 15278 收藏 7 2017-08-03 原文链接: dataunion.org 从带宽扩展到丢包隐藏,实时音频中的 AI juejin.im 深度学习常常需要大量的时间和机算资源进行训练,这也是困扰深度学习算法开发的重大原因。虽然我们可以采用分布式并行训练加速模型的学习,但所需的计算资源并没有丝毫减少。而唯有需要资源更少、令模型收敛更快的最优化算法,才能从根本上加速机器的学习速度和效果,Adam 算法正为此而生! Adam 优化算法是随机梯度下降算法的扩展式,近来其广泛用于深度学习应用中,尤其是计算机视觉和自然语言处理等任务。本文分为两部分,前一部分简要介绍了