sequential

Permuting elements of a vector 10,000 times - efficiently? (R)

僤鯓⒐⒋嵵緔 提交于 2019-12-08 06:38:38
问题 This question is quite straightforward. However, the solutions that I have found to it are extremely memory and time inefficient. I am wondering if this can be done in R without grinding one's machine into dust. Take a vector: x<-c("A", "B", "B", "E", "C", "C", "D", "E", "A', "C") This one has 10 elements. There are five unique elements. Therefore, importantly, some elements are repeated and any permutation should contain the same total number of each type of element. I wish to permute this

Permuting elements of a vector 10,000 times - efficiently? (R)

☆樱花仙子☆ 提交于 2019-12-06 16:15:57
This question is quite straightforward. However, the solutions that I have found to it are extremely memory and time inefficient. I am wondering if this can be done in R without grinding one's machine into dust. Take a vector: x<-c("A", "B", "B", "E", "C", "C", "D", "E", "A', "C") This one has 10 elements. There are five unique elements. Therefore, importantly, some elements are repeated and any permutation should contain the same total number of each type of element. I wish to permute this sequence/vector 10,000 times with each one being a randomly generated and unique one. With my real data,

jquery sequential animation

对着背影说爱祢 提交于 2019-12-06 07:14:14
问题 i'm trying to replicate this animation http://tympanus.net/Tutorials/AnimatedContentMenu/ i'm not able to animate the menu items, than sliding up sequentially $('#bar').animate( {width: '100%'}, {duration: 500, specialEasing: {width: 'linear'}, complete: function() { $('li').each( function() { $(this).animate( {top:'0px'}, {queue: true, duration: 200, specialEasing: {top: 'easeOutBack'}, }); }); } }); In this way the menu items are animated simultaneously.....what's wrong? 回答1: Since the

Is generate Guaranteed to be Executed Sequentially?

核能气质少年 提交于 2019-12-06 06:54:31
问题 I was told here that: The order of generate is not guaranteed => depending on the implementation I have looked up gcc's implementation of generate: for (; __first != __last; ++__first) *__first = __gen(); And Visual Studio implements it identically to that. This is a relief to me as using a lambda in generate that reads and writes to a capture could have undeterministic results: int foo[] = {1, 0, 13}; vector<int> bar(3); generate(bar.begin(), bar.end(), [&]() { static auto i = 0; static auto

使用RNN进行imdb影评情感识别--use RNN to sentiment analysis

一曲冷凌霜 提交于 2019-12-06 02:54:31
原创帖子,转载请说明出处 一、RNN神经网络结构 RNN隐藏层神经元的连接方式和普通神经网路的连接方式有一个非常明显的区别,就是同一层的神经元的输出也成为了这一层神经元的输入。当然同一时刻的输出是不可能作为这个时刻的输入的。所以是前一个时刻(t-1)的输出作为这个时刻(t)的输入。 序列结构展开示意图,s为隐藏层,o为输出层,x为输入层,U为输入层到隐层的权重矩阵,V则是隐层到输出层的权重矩阵,这个网络在t时刻接收到输入 之后,隐藏层的值是 ,输出值是 。关键一点是, 的值不仅仅取决于 ,还取决于 。 二、RNN应用范围 RNNs主要用于处理NLP类的问题,如词向量表达、语句合法性检查、词性标注等。在RNNs中,目前使用最广泛最成功的模型便是LSTMs(Long Short-Term Memory,长短时记忆模型)模型,该模型通常比vanilla RNNs能够更好地对长短时依赖进行表达,该模型相对于一般的RNNs,只是在隐藏层做了手脚。下篇文章会对LSTM进行介绍。 三、使用RNN进行影评情感分析 0x00 实验环境   tensorflow2.0,此版本的keras已经被包含到tf中,导入keras时注意加入tensorflow前缀,如果想关闭vision2.0版本的特性的话,可以使用: import tensorflow.compat.v1 as tf tf.disable

Keras上实现简单线性回归模型

亡梦爱人 提交于 2019-12-06 02:15:36
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 本文链接: https://blog.csdn.net/marsjhao/article/details/67042392 神经网络可以用来模拟回归问题 (regression) ,实质上是单输入单输出神经网络模型,例如给下面一组数据,用一条线来对数据进行拟合,并可以预测新输入 x 的输出值。 一、详细解读 我们通过这个简单的例子来熟悉Keras构建神经网络的步骤: 1.导入模块并生成数据 首先导入本例子需要的模块,numpy、Matplotlib、和keras.models、keras.layers模块。Sequential是多个网络层的线性堆叠,可以通过向Sequential模型传递一个layer的list来构造该模型,也可以通过.add()方法一个个的将layer加入模型中。layers.Dense 意思是这个神经层是全连接层。 2.建立模型 然后用 Sequential 建立 model,再用 model.add 添加神经层,添加的是 Dense 全连接神经层。参数有两个,(注意此处Keras 2.0.2版本中有变更)一个是输入数据的维度,另一个units代表神经元数,即输出单元数。如果需要添加下一个神经层的时候,不用再定义输入的纬度

Incrementing a counter variable in verilog: combinational or sequential

耗尽温柔 提交于 2019-12-05 20:36:58
I am implementing an FSM controller for a datapath circuit. The controller increments a counter internally. When I simulated the program below, the counter was never updated. reg[3:0] counter; //incrementing counter in combinational block counter = counter + 4'b1; However, on creating an extra variable, counter_next, as described in Verilog Best Practice - Incrementing a variable and incrementing the counter only in the sequential block, the counter gets incremented. reg[3:0] counter, counter_next; //sequential block always @(posedge clk) counter <= counter_next; //combinational block counter

pytorch:DCGAN生成动漫头像

淺唱寂寞╮ 提交于 2019-12-05 09:49:39
动漫头像数据集下载地址: 动漫头像数据集_百度云连接 ,DCGAN论文下载地址: https://arxiv.org/abs/1511.06434 数据集里面的图片是这个样子的: 这是DCGAN的主要改进地方: 下面是所有代码: 第一个模块: import torch import torch.nn as nn import numpy as np import torch.nn.init as init import data_helper from torchvision import transforms trans = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((.5, .5, .5), (.5, .5, .5)) ] ) G_LR = 0.0002 D_LR = 0.0002 BATCHSIZE = 50 EPOCHES = 3000 def init_ws_bs(m): if isinstance(m, nn.ConvTranspose2d): init.normal_(m.weight.data, std=0.2) init.normal_(m.bias.data, std=0.2) class Generator(nn.Module): def __init__(self):

pytorch中提取任意层特征

大兔子大兔子 提交于 2019-12-05 08:35:49
个人总结,pytorch中提取任意层的feature有两种方法,这两种方法是根据网络构建的方法不同而产生的; 首先来介绍第一种: 以mobileFaceNet为例,看一下mobileFace构建的网络代码: class MobileFaceNet(Module): def __init__(self, embedding_size,class_num): super(MobileFaceNet, self).__init__() self.conv1 = Conv_block(3, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1)) self.conv2_dw = Conv_block(64, 64, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64) self.conv_23 = Depth_Wise(64, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128) self.conv_3 = Residual(64, num_block=4, groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1)) self.conv_34 = Depth

PyTorch 模型构造

狂风中的少年 提交于 2019-12-05 02:04:02
记录几种模型构造的方法: 继承 Module 类来构造模型 Module 是所有神经网络模块的基类,通过继承它来得到我们需要的模型,通常我们需要重载 Module 类的 __init__ 函数和 forward 函数。 实例 import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) 利用 Module 的子类 在Pytorch中实现了继承自 Module 的可以方便构造模型的类,有 Sequential 、 ModuleList 、 ModuleDict 等 使用 Sequential 当模型的前向计算为简单串联各个层的计算时, Sequential 类可以通过更加简单的方式定义模型。这正是 Sequential 类的目的:它可以接收一个子模块的有序字典(OrderedDict