roller

一道算法题,引出collections.Counter的特殊用法

巧了我就是萌 提交于 2020-10-14 12:20:55
题目描述: 题目编号:1002. 查找常用字符 给定仅有小写字母组成的字符串数组 A,返回列表中的每个字符串中都显示的全部字符(包括重复字符)组成的列表。例如,如果一个字符在每个字符串中出现 3 次,但不是 4 次,则需要在最终答案中包含该字符 3 次。 你可以按任意顺序返回答案。 示例 1: 输入:["bella","label","roller"] 输出:["e","l","l"] 示例 2: 输入:["cool","lock","cook"] 输出:["c","o"] 提示: 1 <= A.length <= 100 1 <= A[i].length <= 100 A[i][j] 是小写字母 以上内容来源:力扣(LeetCode)链接: https://leetcode-cn.com/problems/find-common-characters 题目答案: from collections import Counter class Solution: def commonChars(self, A: List[str]) -> List[str]: res = None for a in A: c = Counter(a) if res is None: res = c else: res &= c return list(res.elements()) 题解看到一个一行流

Unity 用ml-agents机器学习造个游戏AI吧(2) (深度强化学习入门DEMO)

爷,独闯天下 提交于 2020-07-26 19:17:33
目录 本次示例:训练一个追踪红球的白球AI 1. 新建Unity项目,导入package 2. 编写Agent脚本 void OnEpisodeBegin() void CollectObservations(VectorSensor sensor) void OnActionReceived(float[] vectorAction) void Heuristic(float[] action) 3. 搭建好游戏场景 4. 调整脚本参数 Behavior Parameters Roller Agent Decision Requester 5. 开始训练 6. 将训练过的模型整合到Unity中 附录 config文件配置 参考 前言:上一篇博文已经介绍了 Unity Ml-Agents的环境配置 了。 个人建议先敲深度强化学习的Demo再摸清概念比较容易上手,因此本文先提供一个深度强化学习的Demo示例简单阐述下。 更新于2020.3.6:由于现在Unity ml-agents项目比起2018年已经更新了许多,以前的Demo教程已经不适合了,因此决定翻新Unity ml-agents机器学习系列博客。 更新于2020.7.6:没想到仅仅过了几个月,ml-agents项目已经从最初的beta版到现在已经第3个正式发行版了。因此再次翻新博客。 本次示例:训练一个追踪红球的白球AI 1

Unity 用ml-agents机器学习造个游戏AI吧(2) (深度强化学习入门DEMO)

我怕爱的太早我们不能终老 提交于 2020-07-26 07:49:04
目录 本次示例:训练一个追踪红球的白球AI 1. 新建Unity项目,导入package 2. 编写Agent脚本 void OnEpisodeBegin() void CollectObservations(VectorSensor sensor) void OnActionReceived(float[] vectorAction) void Heuristic(float[] action) 3. 搭建好游戏场景 4. 调整脚本参数 Behavior Parameters Roller Agent Decision Requester 5. 开始训练 6. 将训练过的模型整合到Unity中 附录 config文件配置 参考 前言:上一篇博文已经介绍了 Unity Ml-Agents的环境配置 了。 个人建议先敲深度强化学习的Demo再摸清概念比较容易上手,因此本文先提供一个深度强化学习的Demo示例简单阐述下。 更新于2020.3.6:由于现在Unity ml-agents项目比起2018年已经更新了许多,以前的Demo教程已经不适合了,因此决定翻新Unity ml-agents机器学习系列博客。 更新于2020.7.6:没想到仅仅过了几个月,ml-agents项目已经从最初的beta版到现在已经第3个正式发行版了。因此再次翻新博客。 本次示例:训练一个追踪红球的白球AI 1

击败谷歌AI拿下“最强”称号?Facebook AI开源聊天机器人Blender

試著忘記壹切 提交于 2020-05-03 18:20:32
  如今,我们对虚拟语音助手已经十分熟悉。无论是苹果 Siri、亚马逊 Alexa,还是百度小度,阿里巴巴天猫精灵,在提供帮助之余,还经常扮演着被无聊人类调戏的对象。   就在你来我往的博弈之间,语音助手们练就了一身反调戏的本领,甚至还会出其不意,给你惊喜。   但如果把苹果推出 Siri 视为消费级虚拟语音助手诞生元年,算下来迄今已经过了近九年,要说它们没什么长进,恐怕是冤枉了。只不过,跟它们对话似乎总是差点意思。   当然,如果只是指示语音助手设置闹钟,查询天气,它们在绝大多数情况下都能完美实现。然而一旦脱离具体任务,以聊天或咨询为主要目的,因为涉及到对话和交互能力,它们的表现就会一落千丈,经常会出现前言不搭后语的情况,令人沮丧。    为了改善这一问题,Facebook AI 近日就公布了一项最新研究成果:拥有 94 亿参数的开源 AI 聊天机器人 Blender。    Facebook 研究人员声称,Blender 是迄今为止“最先进的”聊天机器人,可以以有趣和连续互动的方式讨论几乎所有内容。 在人-人和 Blender-人的对话比较测试中,有 49% 的测试者把 Blender 的对话记录误认为是人和人的对话,67% 的测试者认为 Blender 和人的对话更像是人和人的对话。      视频|Blender 对话演示(来源:Facebook)   “对话有点像 AI

击败谷歌AI拿下“最强”称号?FacebookAI开源聊天机器人Blender

烂漫一生 提交于 2020-05-03 16:16:04
  如今,我们对虚拟语音助手已经十分熟悉。无论是苹果 Siri、亚马逊 Alexa,还是百度小度,阿里巴巴天猫精灵,在提供帮助之余,还经常扮演着被无聊人类调戏的对象。   就在你来我往的博弈之间,语音助手们练就了一身反调戏的本领,甚至还会出其不意,给你惊喜。   但如果把苹果推出 Siri 视为消费级虚拟语音助手诞生元年,算下来迄今已经过了近九年,要说它们没什么长进,恐怕是冤枉了。只不过,跟它们对话似乎总是差点意思。   当然,如果只是指示语音助手设置闹钟,查询天气,它们在绝大多数情况下都能完美实现。然而一旦脱离具体任务,以聊天或咨询为主要目的,因为涉及到对话和交互能力,它们的表现就会一落千丈,经常会出现前言不搭后语的情况,令人沮丧。    为了改善这一问题,Facebook AI 近日就公布了一项最新研究成果:拥有 94 亿参数的开源 AI 聊天机器人 Blender。    Facebook 研究人员声称,Blender 是迄今为止“最先进的”聊天机器人,可以以有趣和连续互动的方式讨论几乎所有内容。 在人-人和 Blender-人的对话比较测试中,有 49% 的测试者把 Blender 的对话记录误认为是人和人的对话,67% 的测试者认为 Blender 和人的对话更像是人和人的对话。      视频|Blender 对话演示(来源:Facebook)   “对话有点像 AI