reshape

Removing dimension using reshape in keras?

微笑、不失礼 提交于 2020-07-20 17:40:12
问题 Is it possible to remove a dimension using Reshape or any other function. I have the following network. import keras from keras.layers.merge import Concatenate from keras.models import Model from keras.layers import Input, Dense from keras.layers import Dropout from keras.layers.core import Dense, Activation, Lambda, Reshape,Flatten from keras.layers import Conv2D, MaxPooling2D, Reshape, ZeroPadding2D import numpy as np #Number_of_splits = ((input_width-win_dim)+1)/stride_dim splits = ((40-5)

Reshape numpy array having only one dimension

佐手、 提交于 2020-07-03 04:35:09
问题 In order to get a numpy array from a list I make the following: np.array([i for i in range(0, 12)]) And get: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) Then I would like to make a (4,3) matrix from this array: np.array([i for i in range(0, 12)]).reshape(4, 3) and I get the following matrix: array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) But if I know that I will have 3 * n elements in the initial list how can I reshape my numpy array, because the following code np.array([i for

Data frame index transformation in Pandas

a 夏天 提交于 2020-06-29 03:38:07
问题 I want to trasnform the following data frame: ID 1234 type band category 0 A B C to: ID type band category 1234 A B C where ID is the index column 回答1: Try df.stack(0).reset_index().drop('level_0', axis=1) Output: ID Type band category 0 1234 A B C 来源: https://stackoverflow.com/questions/62580244/data-frame-index-transformation-in-pandas

Reshape a pandas DataFrame of (720, 720) into (518400, ) 2D into 1D

走远了吗. 提交于 2020-06-23 08:48:07
问题 I have a DataFrame with shape: 720*720 2D. I wanna convert it to 1D dimension without changing its values. How can I do this using Pandas? 回答1: Use numpy.ravel with converted DataFrame to numpy array: np.random.seed(123) df = pd.DataFrame(np.random.randint(10, size=(3,3))) print (df) 0 1 2 0 2 2 6 1 1 3 9 2 6 1 0 out = df.values.ravel('F') #alternative for pandas 0.24+ #out = df.to_numpy().ravel('F') print (out) [2 1 6 2 3 1 6 9 0] s = pd.Series(df.values.ravel('F')) #alternative for pandas 0

Reshaping data.frame with a by-group where id variable repeats [duplicate]

蹲街弑〆低调 提交于 2020-06-09 05:37:25
问题 This question already has answers here : How to reshape data from long to wide format (11 answers) Closed 21 days ago . I want to reshape/ rearrange a dataset, that is stored as a data.frame with 2 columns: id (non-unique, i.e. can repeat over several rows) --> stored as character value --> stored as numeric value (range 1:3) Sample data: id <- as.character(1001:1003) val_list <- data.frame(sample(1:3, size=12, replace=TRUE)) have <- data.frame(cbind(rep(id, 4), val_list)) colnames(have) <- c

Why is numpy's kron so fast?

老子叫甜甜 提交于 2020-06-08 14:05:34
问题 I was trying to implement a kronecker product function. Below are three ideas that I have: def kron(arr1, arr2): """columnwise outer product, avoiding relocate elements. """ r1, c1 = arr1.shape r2, c2 = arr2.shape nrows, ncols = r1 * r2, c1 * c2 res = np.empty((nrows, ncols)) for idx1 in range(c1): for idx2 in range(c2): new_c = idx1 * c2 + idx2 temp = np.zeros((r2, r1)) temp_kron = scipy.linalg.blas.dger( alpha=1.0, x=arr2[:, idx2], y=arr1[:, idx1], incx=1, incy=1, a=temp) res[:, new_c] = np

Why is numpy's kron so fast?

旧城冷巷雨未停 提交于 2020-06-08 14:03:06
问题 I was trying to implement a kronecker product function. Below are three ideas that I have: def kron(arr1, arr2): """columnwise outer product, avoiding relocate elements. """ r1, c1 = arr1.shape r2, c2 = arr2.shape nrows, ncols = r1 * r2, c1 * c2 res = np.empty((nrows, ncols)) for idx1 in range(c1): for idx2 in range(c2): new_c = idx1 * c2 + idx2 temp = np.zeros((r2, r1)) temp_kron = scipy.linalg.blas.dger( alpha=1.0, x=arr2[:, idx2], y=arr1[:, idx1], incx=1, incy=1, a=temp) res[:, new_c] = np

How do I output the correct percentages on each bar of my Likert chart?

十年热恋 提交于 2020-05-15 08:06:51
问题 I'm trying to get my code to output the percentage on top of each individual bar. Right now, the percentages shown below are on the wrong side. My code combines Labels 1 and 2 and Labels 3 and 4, and then outputs those numbers on the incorrect sides. Is there a function to label those bars correctly? I'm including my code, the data from the .csv file, and the current visualization. library(ggplot2) library(reshape) library(likert) library(dplyr) setwd("~/Desktop/") df <- read.csv("Likert_Test