tensorflow数据集加载
本篇涉及的内容主要有小型常用的经典数据集的加载步骤,tensorflow提供了如下接口:keras.datasets、tf.data.Dataset.from_tensor_slices(shuffle、map、batch、repeat),涉及的数据集如下:boston housing、mnist/fashion mnist、cifar10/100、imdb 1.keras.datasets 通过该接口可以直接下载指定数据集。boston housing提供了和房价有关的一些因子(面积、居民来源等),mnist提供了手写数字的图片和对应label,fashion mnist提供了10种衣服的灰度图和对应label,cifar10/100是用来进行简单图像识别的数据集,分别包含10类物品和100类物品,imdb是一个类似于淘宝好评的数据集,即通过评语及其标注(好评或差评),来实现一个好评或差评的分类器。 注:通过该接口得到的数据集格式为numpy格式。 2.tf.data.Dataset.from_tensor_slices() 该方法可以用来进行数据的迭代,过程中可以直接将numpy格式转化为tensor格式,然后通过调用next(iter())方法实现迭代,使用示例如下: # 加载数据集 (x,y),(x_test,y_test) = keras.datasets.mnist