切比雪夫距离

距离计算方法总结

不想你离开。 提交于 2020-03-31 05:17:34
距离计算方法总结   在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。   本文的目的就是对常用的相似性度量作一个总结。 本文目录: 1. 欧氏距离 2. 曼哈顿距离 3. 切比雪夫距离 4. 闵可夫斯基距离 5. 标准化欧氏距离 6. 马氏距离 7. 夹角余弦 8. 汉明距离 9. 杰卡德距离 & 杰卡德相似系数 10. 相关系数 & 相关距离 11. 信息熵 1. 欧氏距离 (Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。 (1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:   也可以用表示成向量运算的形式: (4)Matlab计算欧氏距离 Matlab计算距离主要使用pdist函数。若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。 例子:计算向量(0,0)、(1,0)、(0,2

机器学习中的相似性度量

南楼画角 提交于 2020-03-03 00:05:36
  在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。   本文的目的就是对常用的相似性度量作一个总结。 本文目录: 1. 欧氏距离 2. 曼哈顿距离 3. 切比雪夫距离 4. 闵可夫斯基距离 5. 标准化欧氏距离 6. 马氏距离 7. 夹角余弦 8. 汉明距离 9. 杰卡德距离 & 杰卡德相似系数 10. 相关系数 & 相关距离 11. 信息熵 1. 欧氏距离 (Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。 (1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:   也可以用表示成向量运算的形式: (4)Matlab计算欧氏距离 Matlab计算距离主要使用pdist函数。若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。 例子:计算向量(0,0)、(1,0)、(0,2)两两间的欧式距离 X

机器学习中的相似性度量

吃可爱长大的小学妹 提交于 2020-03-01 22:55:33
本文的目的就是对常用的相似性度量作一个总结。 本文目录: 1. 欧氏距离 2. 曼哈顿距离 3. 切比雪夫距离 4. 闵可夫斯基距离 5. 标准化欧氏距离 6. 马氏距离 7. 夹角余弦 8. 汉明距离 9. 杰卡德距离 & 杰卡德相似系数 10. 相关系数 & 相关距离 11. 信息熵 1. 欧氏距离 (Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。 (1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:   也可以用表示成向量运算的形式: (4)Matlab计算欧氏距离 Matlab计算距离主要使用pdist函数。若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。 例子:计算向量(0,0)、(1,0)、(0,2)两两间的欧式距离 X = [0 0 ; 1 0 ; 0 2] D = pdist(X,'euclidean') 结果: D = 1.0000 2.0000 2.2361 2. 曼哈顿距离 (Manhattan Distance)

距离计算公式总结(转载)

前提是你 提交于 2019-12-05 11:47:55
计算推荐对象的内容特征和用户模型中兴趣特征二者之间的相似性是推荐算法中一个关键部分 ,相似性的度量可以通过计算距离来实现 在做很多研究问题时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。   本文的目的就是对常用的相似性度量作一个总结。 本文目录: 1. 欧氏距离 2. 曼哈顿距离 3. 切比雪夫距离 4. 闵可夫斯基距离 5. 标准化欧氏距离 6. 马氏距离 7. 夹角余弦 8. 汉明距离 9. 杰卡德距离 & 杰卡德相似系数 10. 相关系数 & 相关距离 11. 信息熵 1. 欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。 (1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:   也可以用表示成向量运算的形式: (4)Matlab计算欧氏距离 Matlab计算距离主要使用pdist函数。若X是一个M×N的矩阵,则pdist(X

常见距离计算 小结

时间秒杀一切 提交于 2019-12-03 01:39:50
小结啥啊 很久之前写的 不过现在忘了 来复习一下 不过这种题 不会写暴力 也是很简单啊 但是分少啊qwq 1 欧式距离 也就是我们常说的 欧几里得距离 也就是 $z=\sqrt{x^2+y^2}$ 然后也就是对应到平面上 求两个点的距离的时候 用横纵坐标之差 然后开根号 即可 就是 现在在班里学习文化课 的同学 数学课本上的 计算公式 很好理解 不过 这种一般用于 题目给定你是 这样计算距离 至于 优化 我没见过什么 比较大的优化吧 或许 是我写题少 那么存在一个例题 就是奶酪qwq 奶酪好啊 题目 这里定义了一下 三维平面的计算公式 不过是多了一个维度z 此时距离 我们按照题目给定的计算方法 显然 我们发现这是一个 并查集维护连通性的问题 那么怎么联通 一定是两个球体中心之间的距离 小于等于给定的 2*r 才能相切或者相交 由于我们发现开根号是此类问题的不好处理的地方 那么我们不妨考虑 此时两边平方 即可 #include<bits/stdc++.h> typedef long long ll; const ll N=1100; ll T,n,h,r,x[N],y[N],z[N],father[N],d[N],u[N]; template<typename T>inline void read(T &x) { x=0;T f=1,ch=getchar(); while(

asd

安稳与你 提交于 2019-11-29 23:23:54
设(f_i)表示(i)到(1)号点的最短距离,(g_i)表示(i)到(2)号点的最短距离,(s_i)表示(n+1)号点到(i)号点的最短距离,(A=s_1,B=s_2) 根据最短路三角形不等式,(|f_i - A| \leq s_i \leq f_i + A , |g_i - B| \leq s_i \leq g_i + B) 而(s_i)要取到最小值,所以(s_i = \max{|f_i - A| , |g_i - B|}) 所以我们要求的是(\sum\limits_{i=1}^N \max{|f_i - A| , |g_i - B|}),这相当于求一个动点((A,B))到平面上(N)个点((f_i,g_i))的最小切比雪夫距离和。 切比雪夫距离可以转为曼哈顿距离,将坐标((x,y))变为((\frac{x+y}{2} , \frac{x-y}{2})),前者的切比雪夫距离等效于后者的曼哈顿距离。而曼哈顿距离可以直接拆开横纵坐标然后取中位数。 注意:我天真的以为2012年的题不会卡SPFA…… 来源: https://www.cnblogs.com/EndSaH/p/11538435.html

曼哈顿距离转换到切比雪夫距离

纵饮孤独 提交于 2019-11-28 00:32:33
定义 在平面内, 1. 欧几里得距离($Euclidean Metric$):$\sqrt {(x_1-x_2)^2 + (y_1-y_2)^2}$. 2. 曼哈顿距离($Manhattan Distance$):$\sqrt {(x_1-x_2)^2 + (y_1-y_2)^2}$. 3. 切比雪夫定理($Chebyshev Distance$):$max(|x_1-x_2|, |y_1-y_2|)$. 转换 这里只介绍曼哈顿距离转换成欧几里得距离,反过来是类似的。 定理 :$(x_1, y_1)$ 与 $(x_2, y_2)$ 的曼哈顿距离等于 $(x_1-y_1, x_1+y_1)$ 与 $(x_2-y_2, x_2+y_2)$ 的切比雪夫距离。 1. 从几何意义 距原点曼哈顿距离为 $a$ 的点组组成了一个正方形:$(a,0),(0,a),(-a,0),(0,-a)$. 同样,距原点切比雪夫距离为 $a$ 的点也组成一个正方形:$(a,a),(-a,a),(-a,-a),(a,-a)$. 建立一个一一映射,即相当于将曼哈顿距离中的点逆时针旋转 $45$ 度,再扩大 $\sqrt 2$ 倍。 设点 $A(x,y)$,由旋转公式,${x}' = \sqrt 2(cos\theta\cdot x - sin \theta\cdot y), \ {y}' = \sqrt 2(sin