ARIMA模型--粒子群优化算法(PSO)和遗传算法(GA)
ARIMA 模型 ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model), 差分整合移动平均自回归模型 ,又称 整合移动平均自回归模型 (移动也可称作滑动), 时间序列 预测分析方法之一。ARIMA(p,d,q)中,AR是"自回归",p为自回归项数;MA为"滑动平均",q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。 ARIMA(p,d,q)模型是 ARMA (p,q)模型的扩展。ARIMA(p,d,q)模型可以表示为: 其中 L 是滞后算子(Lag operator), 1. 平稳性: 平稳性就是要求经由样本时间序列所得到的拟合曲线,在未来的一段时间内仍能顺着现有状态“惯性”地延续下去; 平稳性要求序列的均值和方差不发生明显变化; 方差越大,数据波动越大,方差计算公式如下式所示: 方差等于1,那么标准差也就是1,表示概率函数在对称轴左右偏差1的位置导数为0,即为拐点。期望为0,表示概率函数以y轴为对称轴。 平稳性分为严平稳和弱平稳 严平稳:严平稳表示的分布不随时间的改变而改变,如:白噪声(正态),无论怎么取,都是期望为0,方差为1; 弱平稳:期望与相关系数(依赖性)不变,未来某时刻的t值Xt就要依赖于它的过去信息,所以需要依赖性; 2. 差分法:时间序列在 t 与 t-1 时刻的差值 3. 自回归模型( AR