【转】Pandas学习笔记(四)处理丢失值
原文:https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-4-pd-nan/ 本文有删改 创建含 NaN 的矩阵 有时候我们导入或处理数据, 会产生一些空的或者是 NaN 数据,如何删除或者是填补这些 NaN 数据就是我们今天所要提到的内容. 建立了一个6X4的矩阵数据并且把两个位置的值为空. dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D']) df.iloc[0,1] = np.nan df.iloc[1,2] = np.nan """ A B C D 2013-01-01 0 NaN 2.0 3 2013-01-02 4 5.0 NaN 7 2013-01-03 8 9.0 10.0 11 2013-01-04 12 13.0 14.0 15 2013-01-05 16 17.0 18.0 19 2013-01-06 20 21.0 22.0 23 """ 注意:以下函数并不会在原数据上做修改,只是会返回一个新的 pandas.DataFrame pd.dropna() 如果想直接去掉有