pandas

flatten_json recursive flattening function for lists

泪湿孤枕 提交于 2021-02-20 03:04:10
问题 I want to flatten the following JSON at each level and create a pandas dataframe per level, Im using flatten_json to do that but for that I need to loop through each level which creates multiple nested for loops: { "metadata": { "name": "abc", "time": "2020-04-01" }, "data": [ { "identifiers": [ { "type": "abc", "scheme": "def", "value": "123" }, { "type": "abc", "scheme": "def", "value": "123" } ], "name": "qwer", "type": "abd", "level1": [ { "identifiers": [ { "type": "abc", "scheme": "def"

what is dask and how is it different from pandas

大城市里の小女人 提交于 2021-02-20 03:00:13
问题 Can any one explain how to rectify this error Where do i get a detailed info of dask Can it replace pandas. How is it different from other dataframes, is it fast in processing Code: import dask.dataframe as dd df = dd.demo.make_timeseries('2000-01-01', '2000-12-31', freq='10s', partition_freq='1M',dtypes={'name': str, 'id': int, 'x': float, 'y': float}) print df o/p: Traceback (most recent call last): File "C:/Users/divya.nagandla/PycharmProjects/python/supressions1/dask.py", line 1, in

what is dask and how is it different from pandas

瘦欲@ 提交于 2021-02-20 02:59:48
问题 Can any one explain how to rectify this error Where do i get a detailed info of dask Can it replace pandas. How is it different from other dataframes, is it fast in processing Code: import dask.dataframe as dd df = dd.demo.make_timeseries('2000-01-01', '2000-12-31', freq='10s', partition_freq='1M',dtypes={'name': str, 'id': int, 'x': float, 'y': float}) print df o/p: Traceback (most recent call last): File "C:/Users/divya.nagandla/PycharmProjects/python/supressions1/dask.py", line 1, in

TypeError: float() argument must be a string or a number, not 'method' - Multiple variable regression

对着背影说爱祢 提交于 2021-02-20 02:59:12
问题 I've been getting the error: TypeError: float() argument must be a string or a number, not 'method'. Below is my snippet of code. I've checked other posts like this one: TypeError: float() argument must be a string or a number, not 'function' – Python/Sklearn but can't seem to get to the root cause of the error. Is python saying that my variables (y, x1, x2 etc.) are 'methods' which is why I'm receiving the error? If so, does anyone know how I can resolve this? Thanks in advance to anyone

why sort_values() is diifferent form sort_values().values

非 Y 不嫁゛ 提交于 2021-02-20 02:58:45
问题 I want to sort a dataframe by all columns,and I find a way to solve that using df = df.apply( lambda x: x.sort_values()) and I used it to my data text1 = text text = text.apply( lambda x : x.sort_values()) text1 = text1.apply( lambda x : x.sort_values().values) text.head() text1.head() why not text = text.apply( lambda x : x.sort_values()) get a wrong answer,and what is the .vaules) function? text.head() Wave 2881.394531 2880.574219 2879.75293 2878.931641 2878.111328 N-1 0.220934 0.203666 0

why sort_values() is diifferent form sort_values().values

北慕城南 提交于 2021-02-20 02:58:41
问题 I want to sort a dataframe by all columns,and I find a way to solve that using df = df.apply( lambda x: x.sort_values()) and I used it to my data text1 = text text = text.apply( lambda x : x.sort_values()) text1 = text1.apply( lambda x : x.sort_values().values) text.head() text1.head() why not text = text.apply( lambda x : x.sort_values()) get a wrong answer,and what is the .vaules) function? text.head() Wave 2881.394531 2880.574219 2879.75293 2878.931641 2878.111328 N-1 0.220934 0.203666 0

Pandas resample does not work properly

若如初见. 提交于 2021-02-20 00:37:17
问题 I am getting a weird behaviour from pandas, I want to resample my minute data to hourly data (using mean). My data looks as follows: Data.head() AAA BBB Time 2009-02-10 09:31:00 86.34 101.00 2009-02-10 09:36:00 86.57 100.50 2009-02-10 09:38:00 86.58 99.78 2009-02-10 09:40:00 86.63 99.75 2009-02-10 09:41:00 86.52 99.66 Data.info() <class 'pandas.core.frame.DataFrame'> DatetimeIndex: 961276 entries, 2009-02-10 09:31:00 to 2016-02-29 19:59:00 Data columns (total 2 columns): AAA 961276 non-null

Apply rolling function on pandas dataframe with multiple arguments

假如想象 提交于 2021-02-19 16:35:53
问题 I am trying to apply a rolling function, with a 3 year window, on a pandas dataframe. import pandas as pd # Dummy data df = pd.DataFrame({'Product': ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'B'], 'Year': [2015, 2016, 2017, 2018, 2015, 2016, 2017, 2018], 'IB': [2, 5, 8, 10, 7, 5, 10, 14], 'OB': [5, 8, 10, 12, 5, 10, 14, 20], 'Delta': [2, 2, 1, 3, -1, 3, 2, 4]}) # The function to be applied def get_ln_rate(ib, ob, delta): n_years = len(ib) return sum(delta)*np.log(ob[-1]/ib[0]) / (n_years * (ob[-1]

Python: Unstacked DataFrame is too big, causing int32 overflow

坚强是说给别人听的谎言 提交于 2021-02-19 09:44:51
问题 I have a big dataset and when I try to run this code I get a memory error. user_by_movie = user_items.groupby(['user_id', 'movie_id'])['rating'].max().unstack() here is the error: ValueError: Unstacked DataFrame is too big, causing int32 overflow I have run it on another machine and it worked fine! how can I fix this error? 回答1: As it turns out this was not an issue on pandas 0.21. I am using a Jupyter notebook and I need the latest version of pandas for the rest of the code. So I did this:

Python: Unstacked DataFrame is too big, causing int32 overflow

人走茶凉 提交于 2021-02-19 09:44:14
问题 I have a big dataset and when I try to run this code I get a memory error. user_by_movie = user_items.groupby(['user_id', 'movie_id'])['rating'].max().unstack() here is the error: ValueError: Unstacked DataFrame is too big, causing int32 overflow I have run it on another machine and it worked fine! how can I fix this error? 回答1: As it turns out this was not an issue on pandas 0.21. I am using a Jupyter notebook and I need the latest version of pandas for the rest of the code. So I did this: