Scipy.linalg.eig() giving different eigenvectors from GNU Octave's eig()
问题 I want to compute the eigenvalues for a generalized eigenvalue problem with lambda * M * v = K * v, where lambda is the eigenvalue, v is an eigenvector, and M and K are matrices. Let's say we have K = 1.8000 + 0.0000i -1.0970 + 0.9550i -1.0970 - 0.9550i 1.8000 + 0.0000i M = 209 0 0 209 In Octave, if I do [V,D]=eig(K,M) , I get: V = 0.53332 - 0.46429i -0.53332 + 0.46429i 0.70711 + 0.00000i 0.70711 + 0.00000i D = Diagonal Matrix 0.34555 0 0 3.25445 However, if I do scipy.linalg.eig(K, b=M)