马尔科夫预测

猪猪的机器学习笔记(十七)隐马尔科夫模型HMM

老子叫甜甜 提交于 2020-01-20 04:43:54
隐马尔科夫模型 HMM 作者:樱花猪 摘要: 本文为七月算法( julyedu.com ) 12 月机器学习第十七次课在线笔记。 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型 ,它用来描述一个含有隐含未知参数的马尔科夫过程 。其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步的分析。在早些年HMM模型被非常广泛的应用,而现在随着机器学习的发展HMM模型的应用场景越来越小然而在图像识别等领域HMM依然起着重要的作用。 引言: 隐马尔科夫模型 是马尔科夫链 的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度 分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。所以,隐马尔科夫模型 是一个双重随机过程----具有一定状态数的隐马尔科夫链 和显示随机函数集。自20世纪80年代以来,HMM被应用于语音识别 ,取得重大成功。到了90年代,HMM还被引入计算机文字识别和移动通信核心技术“多用户的检测”。HMM在生物信息科学、故障诊断等领域也开始得到应用。 本次课程以中文分子算法为实践背景基础来讲述隐马尔科夫模型。本次课程主要分享了隐马尔科夫模型的概率计算、参数估计和模拟预测等方法,结合课程上提到的实力,我们能够感受大HMM能够经久不衰的强大力量。

机器学习中的隐马尔科夫模型(HMM)详解

﹥>﹥吖頭↗ 提交于 2019-12-06 14:30:48
前导性推荐阅读资料: 从朴素贝叶斯分类器到贝叶斯网络(上) 从朴素贝叶斯分类器到贝叶斯网络(下) 欢迎关注白马负金羁的博客 http://blog.csdn.net/baimafujinji ,为保证公式、图表得以正确显示,强烈建议你从该地址上查看原版博文。本博客主要关注方向包括:数字图像处理、算法设计与分析、数据结构、机器学习、数据挖掘、统计分析方法、自然语言处理。 引言 在之前介绍贝叶斯网络的博文中,我们已经讨论过概率图模型(PGM)的概念了。Russell等在文献【1】中指出:“在统计学中,图模型这个术语指包含贝叶斯网络在内的比较宽泛的一类数据结构。” 维基百科中更准确地给出了PGM的定义:“A graphical model or probabilistic graphical model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. ” 如果你已经掌握了贝叶斯网络,那么你一定不会对PGM的概念感到陌生。本文将要向你介绍另外一种类型的PGM,即隐马尔可夫模型(HMM,Hidden Markov Model)。更准确地说,HMM是一种特殊的贝叶斯网络。 一些必备的数学知识 随机过程

马尔可夫模型学习

落爺英雄遲暮 提交于 2019-12-06 14:28:29
1. 马尔科夫模型 1.1马尔可夫过程 马尔可夫过程( Markov process )是一类 随机过程 。它的原始模型 马尔可夫链 ,由俄国数学家 A.A. 马尔可夫 于 1907 年提出。该过程具有如下特性:在已知目前状态 (现在)的条件下,它未来的演变 (将来)不依赖于它以往的演变 ( 过去 ) 。 例如森林中动物头数的变化构成 —— 马尔可夫过程 。在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的 布朗运动 、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。 在马尔可夫性的定义中, " 现在 " 是指固定的时刻,但实际问题中常需把马尔可夫性中的 “ 现在 ” 这个时刻概念推广为停时(见随机过程)。例如考察从圆心出发的平面上的布朗运动,如果要研究首次到达圆周的时刻 τ 以前的事件和以后的事件的条件独立性,这里 τ 为停时,并且认为 τ 是 “ 现在 ” 。如果把 “ 现在 ” 推广为停时情形的 “ 现在 ” ,在已知 “ 现在 ” 的条件下, “ 将来 ” 与 “ 过去 ” 无关,这种特性就叫强马尔可夫性。具有这种性质的马尔可夫过程叫强马尔可夫过程。在相当一段时间内,不少人认为马尔可夫过程必然是强马尔可夫过程。首次提出对强马尔可夫性需要严格证明的是 J.L. 杜布 。直到 1956 年,才有人找到马尔可夫过程不是强马尔可夫过程的例子

阿里巴巴笔试题-马尔科夫(HMM)的特征

…衆ロ難τιáo~ 提交于 2019-12-06 14:26:51
Hidden Markov model (HMM) 一、马尔科夫转移矩阵法的涵义 单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率。在激烈的竞争中,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化。企业在对产品种类与经营方向做出决策时,需要预测各种商品之间不断转移的市场占有率。 市场占有率的预测可采用马尔科夫转移矩阵法,也就是运用转移概率矩阵对市场占有率进行市场趋势分析的方法。马尔科夫是俄国数学家,他在20世纪初发现:一个系统的某些因素在转移中,第n次结果只受第n-1的结果影响,只与当前所处状态有关,与其他无关。比如:研究一个商店的累计销售额,如果现在时刻的累计销售额已知,则未来某一时刻的累计销售额与现在时刻以前的任一时刻的累计:销售额都无关。在马尔科夫分析中,引入状态转移这个概念。所谓状态是指客观事物可能出现或存在的状态;状态转移是指客观事物由一种状态转穆到另一种状态的概率。 马尔科夫分析法的一般步骤为: ①调查目前的市场占有率情况; ②调查消费者购买产品时的变动情况; ③建立数学模型; ④预测未来市场的占有率。 二、马尔科夫分析模型 实际分析中,往往需要知道经过一段时间后,市场趋势分析对象可能处于的状态,这就要求建立一个能反映变化规律的数学模型。马尔科夫市场趋势分析模型是利用概率建立一种随机型的时序模型,并用于进行市场趋势分析的方法。

马尔科夫状态转移矩阵

牧云@^-^@ 提交于 2019-11-28 07:29:34
  状态转移矩阵是俄国数学家马尔科夫提出的,他在20世纪初发现:一个系统的某些因素在转移过程中,第n次结果只受第n-1的结果影响,即只与上一时刻所处状态有关,而与过去状态无关。 在马尔科夫分析中,引入状态转移这个概念。所谓状态是指客观事物可能出现或存在的状态;状态转移是指客观事物由一种状态转移到另一种状态   在状态转移矩阵中,矩阵各元素表示状态转移的概率,并且各行元素之和等于1,其现实意义是,各个状态的百分比总和为1   假定某大学有1万学生,每人每月用1支牙膏,并且只使用“中华”牙膏与“黑妹”牙膏两者之一。根据本月(12月)调查,有3000人使用黑妹牙膏,7000人使用中华牙膏。又据调查,使用黑妹牙膏的3000人中,有60%的人下月将继续使用黑妹牙膏,40%的人将改用中华牙膏; 使用中华牙膏的7000人中, 有70%的人下月将继续使用中华牙膏,30%的人将改用黑妹牙膏。据此,可以得到以下转移矩阵      通过转移矩阵与初始化状态,即可预测之后月份两种牙膏的市场占比   代码实现如下:    import matplotlib.pyplot as plt import numpy as np def markov(): current_status = np.array([3000, 7000]) transfer_matrix = np.array([[0.6, 0.4],

从随机过程的熵率和马尔科夫稳态过程引出的一些思考 - 人生逃不过一场马尔科夫稳态

旧时模样 提交于 2019-11-26 19:21:01
1. 引言 0x1:人生就是一个马尔科夫稳态 每一秒我们都在做各种各样的选择,要吃青菜还是红烧肉、看电影还是看书、跑步还是睡觉,咋一看起来,每一个选择都是随机的,而人生又是由无数个这样的随机选择组成的结果。从这个前提往下推导,似乎可以得出一个结论,即人生是无常的,未来是不可预测的。但事实真的是如此吗? 以前的老人流行说一句话,三岁看小,七岁看老。这似乎是一句充满迷信主义色彩的俗语,但其实其中暗含了非常质朴而经典的理论依据,即随机过程不管其转移概率分布如何,随着时序的增大,最终会收敛在某个稳态上。用人话说就是:人在七岁时,其核心性格会定型,在今后的一生中,不管其经历了什么,最终都会殊途同归,到达同一个人生结局。 现在很流行一句话叫,性格决定命运。这句话从很多不同的学科中可以得到不同的解释,例如现代心理学会说性格的本质就是潜意识,而潜意识影响所有的思想和行为,进而影响了命运。社会行为学会说性格决定了你的人际网络拓朴结构与网络信息交互率等因素,而成功的人往往是那种同时占据了多个重要结构洞的关键人物,例如国家领导人或者公司高层。用信息论马尔柯夫随机过程的理论来解释就说,每个人的概率转移函数在很小的时候就会基本定型,对于每个人来说,出生、天赋这些都不是至关重要的因素,而相反,决定一个人最终能得到多少成就的决定因素是你的n,也即你能在多大程度上延伸生命的长度,生命周期n越长