机器学习实战(五)逻辑回归实战篇之预测病马死亡率 (Peter Harrington著)
一 前言 本文对梯度上升算法和改进的随机梯度上升算法进行了对比,总结了各自的优缺点,并对sklearn.linear_model.LogisticRegression进行了详细介绍。 二 改进的随机梯度上升算法 梯度上升算法在每次更新回归系数(最优参数)时,都需要遍历整个数据集。可以看一下我们之前写的梯度上升算法: def gradAscent(dataMatIn, classLabels): dataMatrix = np.mat(dataMatIn) #转换成numpy的mat labelMat = np.mat(classLabels).transpose() #转换成numpy的mat,并进行转置 m, n = np.shape(dataMatrix) #返回dataMatrix的大小。m为行数,n为列数。 alpha = 0.01 #移动步长,也就是学习速率,控制更新的幅度。 maxCycles = 500 #最大迭代次数 weights = np.ones((n,1)) for k in range(maxCycles): h = sigmoid(dataMatrix * weights) #梯度上升矢量化公式 error = labelMat - h weights = weights + alpha * dataMatrix.transpose() * error