even_Sn_not_even_n - apply 1 hypothesis in another
问题 Unfortunately I got stuck again: Inductive even : nat > Prop := | ev_0 : even 0 | ev_SS (n : nat) (H : even n) : even (S (S n)). Lemma even_Sn_not_even_n : forall n, even (S n) <-> not (even n). Proof. intros n. split. + intros H. unfold not. intros H1. induction H1 as [|n' E' IHn]. - inversion H. - inversion_clear H. apply IHn in H0. apply H0. + intros H. induction n as [|n' IHn]. - exfalso. apply H. apply ev_0. - apply evSS_inv'. Here is the result: 1 subgoal (ID 179) n' : nat H : ~ even (S