Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients总结
粒子群优化算法( PSO ) 是在 1995年由Eberhart博士和Kennedy博士一起提出的,它源于对鸟群捕食行为的研究。它的基本核心是利用群体中的个体对信息的共享从而使得整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得问题的最优解。 在 PSO中, 所有的粒子都具有一个位置向量(粒子在解空间的位置)和速度向量(决定下次飞行的方向和速度),并可以根据目标函数来计算当前的所在位置的适应值。在每次的迭代中,种群中的粒子 根据每个粒子自身的飞行经验和其他粒子在搜索空间中的飞行经验,动态改变每个粒子的速度,来调整搜索空间中每个个体的轨迹 ,从而确定下一次迭代时需要如何调整和改变飞行的方向和速度。就这样逐步迭代,最终整个种群的粒子就会逐步趋于最优解。 对于 PSO算法,惯性权重因子和两个加速常数的取值直接影响了算法的优越性。Asanga Ratnaweera等人提出了对PSO算法的扩展,并通过实验与 时变惯性权重因子法 ( PSO-TVIW )和随机惯性权重因子法( PSO-RANDIW)比较了不同方法的优缺点。 第一种是引入 时变加速度系数( TVAC) , 通过改变加速系数并随着时间的推移减少了认知成分,增加了社会成分 : 在一开始时,认知成分较大而社会成分较小,因此允许粒子在搜索空间中移动,而不是最好地朝向人口移动 ,同时