决策树是如何选择特征和分裂点?
©PaperWeekly 原创 · 作者|贲忠奇 单位|便利蜂算法工程师 研究方向|推荐算法、反作弊 缘起 在解决回归和分类问题的时候,一般会使用 Random Forest、GBDT、XGBoost、LightGBM 等算法,这类算法因为性能好,被业界广泛采用。突然想到树类型的算法都需要明白一个基本问题,树是如何选择特征和分裂点的?其根本要追溯到决策树的种类,每种是如何划分特征和分裂点,以及如何剪枝的。 决策树分为三类:ID3、C4.5、CART。提出时间却是 1984 年提出 CART,1986年提出的 ID3,1993 年提出的 C4.5。在介绍决策树之前需要了解一些信息论的知识,信息、熵、条件熵、信息增益。决策树中的 ID3 和 C4.5 与信息论息息相关。 信息论基础 信息是杂乱无章数据的一种度量方式。在分类问题中,如果待分类的事物可以划分在多个分类中,那么某个分类 的信息定义为: 其中, 是某个分类的信息; 是选择该分类的概率。 熵是信息的期望,也就是计算所有分类包含信息的期望值: 其中,H(Y) 表示分类数据集的熵。 条件熵是在特征 X 给定条件下,类别 Y 的条件概率分布的熵对特征 X 的数学期望。 其中, 表示在特征 X 下的条件熵; 表示特征下 具体特征值的条件熵; 表示 x 和 y 的联合概率分布。 在划分数据集之前之后信息发生的变化叫做信息增益